Lý thuyết Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn Toán 9 Kết nối tri thức>
1. Phương trình bậc nhất hai ẩn Khái niệm phương trình bậc nhất hai ẩn
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
1. Phương trình bậc nhất hai ẩn
Khái niệm phương trình bậc nhất hai ẩn
Phương trình bậc nhất hai ẩn x và y là hệ thức dạng \(ax + by = c\), (1) trong đó a, b và c là các số đã biết (\(a \ne 0\) hoặc \(b \ne 0\)). |
Ví dụ: \(2x + 3y = 4\), \(0x + 2y = 3\), \(x + 0y = 2\) là các phương trình bậc nhất hai ẩn.
Nghiệm của phương trình bậc nhất hai ẩn
Nếu tại \(x = {x_0}\) và \(y = {y_0}\) ta có \(a{x_0} + b{y_0} = c\) là một khẳng định đúng thì cặp số \(\left( {{x_0};{y_0}} \right)\) được gọi là một nghiệm của phương trình (1). |
Ví dụ: Cặp số \(( - 1;2)\) là nghiệm của phương trình \(2x + 3y = 4\) vì \(2.\left( { - 1} \right) + 3.2 = - 2 + 6 = 4\).
Cặp số \((1;2)\) không là nghiệm của phương trình \(2x + 3y = 4\) vì
\(2.1 + 3.2 = 2 + 6 = 8 \ne 4\).
2. Hệ hai phương trình bậc nhất hai ẩn
Khái niệm hệ hai phương trình bậc nhất hai ẩn
Một cặp gồm hai phương trình bậc nhất hai ẩn \(ax + by = c\) và \(a'x + b'y = c'\) được gọi là một hệ hai phương trình bậc nhất hai ẩn. Ta thường viết hệ phương trình đó dưới dạng: \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\,(*)\) |
Ví dụ: Hệ phương trình \(\left\{ \begin{array}{l}2x - y = 0\\x + y = 3\end{array} \right.\), \(\left\{ \begin{array}{l}3x = 1\\x - y = 3\end{array} \right.\), \(\left\{ \begin{array}{l}4x - y = 3\\3y = 6\end{array} \right.\) là các hệ phương trình bậc nhất hai ẩn.
Nghiệm của hệ hai phương trình bậc nhất hai ẩn
Mỗi cặp số \(\left( {{x_0};{y_0}} \right)\) được gọi là một nghiệm của hệ (*) nếu nó là nghiệm chung của hai phương trình của hệ (*). |
Ví dụ: Cặp số (1; 2) là một nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x - y = 0\\x + y = 3\end{array} \right.\), vì:
\(2x - y = 2.1 - 2 = 0\) nên (1; 2) là nghiệm của phương trình thứ nhất.
\(x + y = 1 + 2 = 3\) nên (1; 2) là nghiệm của phương trình thứ hai.
- Giải mục 1 trang 6, 7, 8 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải mục 2 trang 9 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 1.1 trang 10 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 1.2 trang 10 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 1.3 trang 10 SGK Toán 9 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục