Giải mục 3 trang 28, 29, 30 SGK Toán 8 tập 1 – Chân trời sáng tạo>
Xét các phân thức (P = dfrac{{{x^2}y}}{{x{y^2}}}), (Q = dfrac{x}{y}), (R = dfrac{{{x^2} + xy}}{{xy + {y^2}}}) . a) Các phân thức trên có bằng nhau không? Tại sao? b) Có thể biến đổi như thế nào nếu chuyển (Q) thành (P) và (R) thành (Q).
Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Khoa học tự nhiên
HĐ4
Video hướng dẫn giải
Xét các phân thức \(P = \dfrac{{{x^2}y}}{{x{y^2}}}\), \(Q = \dfrac{x}{y}\), \(R = \dfrac{{{x^2} + xy}}{{xy + {y^2}}}\) .
a) Các phân thức trên có bằng nhau không? Tại sao?
b) Có thể biến đổi như thế nào nếu chuyển \(Q\) thành \(P\) và \(R\) thành \(Q\).
Phương pháp giải:
a) Sử dụng kiến thức: \(\dfrac{A}{B}\) \( = \dfrac{C}{D}\) nếu \(AD = BC\) để kiểm tra xem các phân thức trên có bằng nhau hay không?
b) Nhân hoặc cả tử và mẫu của đa thức \(Q\) cho \(xy\); chia cả tử và mẫu của đa thức của \(R\) cho \(x + y\)
Lời giải chi tiết:
a) Ta có:
\({x^2}y.y = {x^2}{y^2}\)
\(x{y^2}.x = {x^2}{y^2}\)
Do đó\({x^2}y.y = x{y^2}.x\)
Vậy \(P = Q\) (1)
Ta có:
\(x.\left( {xy + {y^2}} \right) = {x^2}y + x{y^2}\)
\(y.\left( {{x^2} + xy} \right) = {x^2}y + x{y^2}\)
Do đó \(x.\left( {xy + {y^2}} \right) = y.\left( {{x^2} + xy} \right)\)
Vậy \(Q = R\) (2)
Từ (1) và (2) suy ra \(P = Q = R\)
b) Nhân cả tử và mẫu của phân thức \(Q\) với \(xy\) để chuyển \(Q\) thành \(P\), ta được: \(Q = \dfrac{x}{y} = \dfrac{{x.xy}}{{y.xy}} = \dfrac{{{x^2}y}}{{x{y^2}}}\)
Phân thức cả tử và mẫu của phân thức \(R\) thành nhân tử rồi chia cả tử và mẫu của phân thức \(R\) cho nhân tử chung \(x + y\) để chuyển \(R\) thành \(Q\), ta được: \(R = \dfrac{{{x^2} + xy}}{{xy + {y^2}}} = \dfrac{{x.\left( {x + y} \right)}}{{y.\left( {x + y} \right)}} = \dfrac{{x.\left( {x + y} \right):\left( {x + y} \right)}}{{y.\left( {x + y} \right):\left( {x + y} \right)}} = \dfrac{x}{y}\)
Thực hành 4
Video hướng dẫn giải
Chứng tỏ hai phân thức \(\dfrac{{{a^2} - {b^2}}}{{{a^2}b + a{b^2}}}\) và \(\dfrac{{a - b}}{{ab}}\) bằng nhau theo hai cách khác nhau.
Phương pháp giải:
Phân tích tử và mẫu của phân thức \(\dfrac{{{a^2} - {b^2}}}{{{a^2}b + a{b^2}}}\) thành nhân tử để tìm nhân tử chung. Sau đó chia cả tử và mẫu cho nhân tử chung.
Nhân cả tử và mẫu của phân thức \(\dfrac{{a - b}}{{ab}}\) với \(a + b\)
Lời giải chi tiết:
Cách 1: \(\dfrac{{{a^2} - {b^2}}}{{{a^2}b + a{b^2}}} = \dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{ab\left( {a + b} \right)}} = \dfrac{{a - b}}{{ab}}\)
Cách 2: \(\dfrac{{a - b}}{{ab}} = \dfrac{{\left( {a - b} \right).\left( {a + b} \right)}}{{ab.\left( {a + b} \right)}} = \dfrac{{{a^2} - {b^2}}}{{{a^2}b + a{b^2}}}\)
Vậy hai phân thức đã cho bằng nhau
Thực hành 5
Video hướng dẫn giải
Rút gọn các phân thức sau:
a) \(\dfrac{{3{x^2} + 6xy}}{{6{x^2}}}\)
b) \(\dfrac{{2{x^2} - {x^3}}}{{{x^2} - 4}}\)
c) \(\dfrac{{x + 1}}{{{x^3} + 1}}\)
Phương pháp giải:
- Phân tích tử và mẫu thành nhân tử để tìm nhân tử chung
- Chia cả tử và mẫu cho nhân tử chung để rút gọn phân thức
Lời giải chi tiết:
a) \(\dfrac{{3{x^2} + 6xy}}{{6{x^2}}}\) \( = \dfrac{{3x.\left( {x + 2y} \right)}}{{3x.2x}} = \dfrac{{x + 2y}}{{2x}}\)
b) \(\dfrac{{2{x^2} - {x^3}}}{{{x^2} - 4}}\)\( = \dfrac{{{x^2}.\left( {2 - x} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \dfrac{{ - {x^2}\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \dfrac{{ - {x^2}}}{{x + 2}}\)
c) \(\dfrac{{x + 1}}{{{x^3} + 1}}\) \( = \dfrac{{x + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \dfrac{1}{{{x^2} - x + 1}}\)
- Giải Bài 1 trang 30 SGK Toán 8 tập 1 – Chân trời sáng tạo
- Giải Bài 2 trang 30 SGK Toán 8 tập 1 – Chân trời sáng tạo
- Giải Bài 3 trang 30 SGK Toán 8 tập 1 – Chân trời sáng tạo
- Giải Bài 4 trang 30 SGK Toán 8 tập 1 – Chân trời sáng tạo
- Giải Bài 5 trang 30 SGK Toán 8 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo