Giải mục 1 trang 56, 57, 58 Chuyên đề học tập Toán 10 - Chân trời sáng tạo>
Chứng tỏ rằng nếu điểm \(M({x_0};{y_0})\) nằm trên parabol (P) thì điểm \(N({x_0}; - {y_0})\) cũng nằm trên parabol (P)
HĐ1
Chứng tỏ rằng nếu điểm \(M({x_0};{y_0})\) nằm trên parabol (P) thì điểm \(N({x_0}; - {y_0})\) cũng nằm trên parabol (P)
Lời giải chi tiết:
Nếu điểm \(M({x_0};{y_0})\) nằm trên parabol thì \({y_0}^2 = 2p{x_0} \Leftrightarrow {( - {y_0})^2} = 2p{x_0}\)
nên điểm \(M'({x_0}; - {y_0})\) cũng nằm trên parabol.
Thực hành 1
Tìm tọa độ tiêu điểm, tọa độ đỉnh, phương trình đường chuẩn và trục đối xứng của các parabol sau:
a) \(({P_1}):{y^2} = 2x\)
b) \(({P_2}):{y^2} = x\)
c) \(({P_3}):{y^2} = \frac{1}{5}x\)
Phương pháp giải:
Cho parabol có PTCT \({y^2} = 2px\)
+ Tiêu điểm: \(F\left( {\frac{p}{2};0} \right)\)
+ Đỉnh O(0;0)
+ Đường chuẩn: \(\Delta :x = - \frac{p}{2}\)
+ Trục đối xứng: Ox
Lời giải chi tiết:
a) Ta có: \(2p = 2\), suy ra \(p = 1\).
Vậy \(({P_1})\) có tiêu điểm \(F\left( {\frac{1}{2};0} \right)\), đỉnh \(O(0;0)\), đường chuẩn \(\Delta :x = - \frac{1}{2}\) và nhận Ox làm trục đối xứng.
b) Ta có: \(2p = 1\), suy ra \(p = \frac{1}{2}\).
Vậy \(({P_2})\) có tiêu điểm \(F\left( {\frac{1}{4};0} \right)\), đỉnh \(O(0;0)\), đường chuẩn \(\Delta :x = - \frac{1}{4}\) và nhận Ox làm trục đối xứng.
c) Ta có: \(2p = \frac{1}{5}\), suy ra \(p = \frac{1}{{10}}\).
Vậy \(({P_2})\) có tiêu điểm \(F\left( {\frac{1}{{20}};0} \right)\), đỉnh \(O(0;0)\), đường chuẩn \(\Delta :x = - \frac{1}{{20}}\) và nhận Ox làm trục đối xứng.
Vận dụng 1
Trong mặt phẳng Oxy, cho điểm \(A(2;0)\) và đường thẳng \(d:x + 2 = 0\). Viết phương trình của đường (L) là tập hợp các tâm \(J(x;y)\) của các đường tròn (C) thay đổi nhưng luôn luôn đi qua A và tiếp xúc với d.
Lời giải chi tiết:
Ta có: (C) đi qua \(A(2;0)\) và tiếp xúc với \(d:x + 2 = 0\)
\(\begin{array}{l} \Rightarrow d(J,d) = JA\\ \Leftrightarrow \left| {x + 2} \right| = \sqrt {{{(x - 2)}^2} + {y^2}} \\ \Leftrightarrow {\left( {x + 2} \right)^2} = {(x - 2)^2} + {y^2}\\ \Leftrightarrow {x^2} + 4x + 4 = {x^2} - 4x + 4 + {y^2}\\ \Leftrightarrow {y^2} = 8x\end{array}\)
Tức là tâm \(J(x;y)\) của (C) nằm trên parabol (P) \({y^2} = 8x\)
- Giải mục 2 trang 55, 56, 57, 58 Chuyên đề học tập Toán 10 - Chân trời sáng tạo
- Giải bài 1 trang 59 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 2 trang 59 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 3 trang 59 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 4 trang 59 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 7 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 6 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 5 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 4 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 8 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 7 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 6 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 5 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 4 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo