Giải bài tập 6 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo>
Gọi a là góc giữa hai vectơ \(\overrightarrow u = (0; - 1;0)\) và \(\overrightarrow v = (\sqrt 3 ;1;0)\). Giá trị của \(\alpha \) là A. \(\alpha = \frac{\pi }{6}\). B. \(\alpha = \frac{\pi }{3}\). C. \(\alpha = \frac{{2\pi }}{3}\). D. \(\alpha = \frac{\pi }{2}\).
Đề bài
Gọi a là góc giữa hai vectơ \(\overrightarrow u = (0; - 1;0)\) và \(\overrightarrow v = (\sqrt 3 ;1;0)\). Giá trị của \(\alpha \) là
A. \(\alpha = \frac{\pi }{6}\).
B. \(\alpha = \frac{\pi }{3}\).
C. \(\alpha = \frac{{2\pi }}{3}\).
D. \(\alpha = \frac{\pi }{2}\).
Phương pháp giải - Xem chi tiết
Ta có: \(\cos (\overrightarrow a ,\overrightarrow b ) = \frac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a |.|\overrightarrow b |}}\)
Lời giải chi tiết
Chọn C
\(\cos (\overrightarrow u ,\overrightarrow v ) = \frac{{\overrightarrow u .\overrightarrow v }}{{|\overrightarrow u |.|\overrightarrow v |}} = \frac{{0.\sqrt 3 - 1.1 + 0.0}}{{\sqrt {{1^2}} .\sqrt {{{(\sqrt 3 )}^2} + {1^2}} }} = - \frac{1}{2} \Rightarrow (\overrightarrow u ,\overrightarrow v ) = \frac{{2\pi }}{3}\)
- Giải bài tập 7 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 8 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 9 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 10 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 11 trang 66 SGK Toán 12 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo