Giải bài tập 14 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo>
Cho hai điểm A(1; 2; –1), B(0; –2; 3). a) Tính độ dài đường cao AH hạ từ đỉnh A của tam giác OAB với O là gốc toạ độ. b) Tính diện tích tam giác OAB.
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Cho hai điểm A(1; 2; –1), B(0; –2; 3).
a) Tính độ dài đường cao AH hạ từ đỉnh A của tam giác OAB với O là gốc toạ độ.
b) Tính diện tích tam giác OAB.
Phương pháp giải - Xem chi tiết
a) \(\overrightarrow a \bot \overrightarrow b \Rightarrow \overrightarrow a .\overrightarrow b = 0\). Công thức tính độ lớn vecto: \(|\overrightarrow a | = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \)
b) \({S_{OAB}} = \frac{1}{2}AH.OB = \frac{1}{2}|\overrightarrow {AH} |.|\overrightarrow {OB} |\)
Lời giải chi tiết
a) Ta có: \(\overrightarrow {OB} = (0; - 2;3)\)
Gọi H(x;y;z) là chân đường cao kẻ từ A của tam giác OAB
=> \(\overrightarrow {OH} = (x;y;z)\)
\(\overrightarrow {OH} \) cùng phương với \(\overrightarrow {OB} \) nên \(x = 0;y = - 2t;z = 3t\) => \(H(0; - 2t;3t)\)
Ta có: \(\overrightarrow {AH} = ( - 1; - 2t - 2;3t + 1)\)
\(\overrightarrow {AH} \bot \overrightarrow {OB} \Leftrightarrow \overrightarrow {AH} .\overrightarrow {OB} = 0 \Leftrightarrow - 1.0 - 2.( - 2t - 2) + 3.(3t + 1) = 0 \Leftrightarrow t = - \frac{7}{{13}}\)
Vậy \(H(0;\frac{{14}}{{13}};\frac{{ - 21}}{{13}})\)
b) \(\overrightarrow {AH} = ( - 1; - \frac{{12}}{{13}}; - \frac{8}{{13}}) \Rightarrow AH = \sqrt {{{( - 1)}^2} + {{( - \frac{{12}}{{13}})}^2} + {{( - \frac{8}{{13}})}^2}} = \frac{{\sqrt {377} }}{{13}}\)
\(\overrightarrow {OB} = (0; - 2;3) \Rightarrow OB = \sqrt {{{( - 2)}^2} + {3^2}} = \sqrt {13} \)
Diện tích tam giác OAB: \({S_{OAB}} = \frac{1}{2}AH.OB = \frac{1}{2}.\frac{{\sqrt {377} }}{{13}}.\sqrt {13} = \frac{{\sqrt {29} }}{2}\)
- Giải bài tập 15 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 16 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 13 trang 66 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 12 trang 66 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 11 trang 66 SGK Toán 12 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo