Giải bài tập 5 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo


Tìm a) \(\int {x{{\left( {2x - 3} \right)}^2}dx} \) b) \(\int {{{\sin }^2}\frac{x}{2}dx} \) c) \(\int {{{\tan }^2}xdx} \) d) \(\int {{2^{3x}}{{.3}^x}} dx\)

Đề bài

Tìm

a) \(\int {x{{\left( {2x - 3} \right)}^2}dx} \)

b) \(\int {{{\sin }^2}\frac{x}{2}dx} \)

c) \(\int {{{\tan }^2}xdx} \)

d) \(\int {{2^{3x}}{{.3}^x}} dx\)

Phương pháp giải - Xem chi tiết

a) Khai triển biểu thức \(x{\left( {2x - 3} \right)^2}\), sau đó đưa về tính nguyên hàm của các hàm số sơ cấp.

b) Sử dụng công thức hạ bậc \({\sin ^2}\alpha  = \frac{{1 - \cos 2\alpha }}{2}\), sau đó đưa về tính nguyên hàm của các hàm số sơ cấp.

c) Sử dụng công thức \({\tan ^2}x = \frac{1}{{{{\cos }^2}x}} - 1\), sau đó đưa về tính nguyên hàm của các hàm số sơ cấp.

d) Biến đổi \(\int {{2^{3x}}{{.3}^x}} dx\) về dạng \(\int {{a^x}dx} \), rồi dùng công thức nguyên hàm của hàm số mũ.

Lời giải chi tiết

a) \(\int {x{{\left( {2x - 3} \right)}^2}dx}  = \int {x\left( {4{x^2} - 12x + 9} \right)dx}  = \int {\left( {4{x^3} - 12{x^2} + 9x} \right)dx} \)

\( = 4\int {{x^3}dx}  - 12\int {{x^2}dx}  + 9\int {xdx}  = 4.\frac{{{x^4}}}{4} - 12.\frac{{{x^3}}}{3} + 9.\frac{{{x^2}}}{2} + C = {x^4} - 4{x^3} + \frac{9}{2}{x^2} + C\)

b) \(\int {{{\sin }^2}\frac{x}{2}dx}  = \int {\frac{{1 - \cos x}}{2}dx = \frac{1}{2}\int {dx}  - \frac{1}{2}\int {\cos xdx}  = \frac{1}{2}x - \frac{1}{2}\sin x + C} \)

c) \(\int {{{\tan }^2}xdx}  = \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx = \int {\frac{1}{{{{\cos }^2}x}}dx}  - \int {dx}  = \tan x - x + C} \)

d) \(\int {{2^{3x}}{{.3}^x}} dx = \int {{{\left( {{2^3}} \right)}^x}{{.3}^x}dx}  = \int {{8^x}{{.3}^x}dx}  = \int {{{24}^x}dx}  = \frac{{{{24}^x}}}{{\ln 24}} + C\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí