Giải bài tập 2.7 trang 36 SGK Toán 9 tập 1 - Cùng khám phá>
Cho \(x\) và \(y\) là hai số thực tùy ý, trong đó \(x < y\). Chứng minh rằng \(5 - 2x > 3 - 2y\).
Đề bài
Cho \(x\) và \(y\) là hai số thực tùy ý, trong đó \(x < y\). Chứng minh rằng \(5 - 2x > 3 - 2y\).
Phương pháp giải - Xem chi tiết
Dựa vào các mối liên hệ để giải bài toán.
Lời giải chi tiết
Vì \(x < y\) nên nhân hai vế của bất phương trình với \( - 2 < 0\) ta được: \( - 2x > - 2y\) (1).
Cộng hai vế của bất phương trình (1) với số 5, ta được: \(5 - 2x > 5 - 2y\) (2).
Mặt khác, vì \(5 > 3\) nên \(5 - 2y > 3 - 2y\) (3).
Từ (2) và (3), sử dụng tính chất bắc cầu, suy ra \(5 - 2x > 3 - 2y\).
- Giải bài tập 2.8 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 2.9 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 2.6 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 2.5 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 2.4 trang 36 SGK Toán 9 tập 1 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá