Toán 9 cánh diều | Giải toán lớp 9 cánh diều
Bài 2. Một số hệ thức về cạnh và góc trong tam giác vuô..
Giải bài tập 2 trang 86 SGK Toán 9 tập 1 - Cánh diều>
Cho tam giác (ABC) có đường cao (AH = 6cm,widehat B = 40^circ ,widehat C = 35^circ ). Tính độ dài các đoạn thẳng (AB,BH,AC,BC) (làm tròn kết quả đến hàng phần mười của centimét).
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Cánh diều
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Cho tam giác \(ABC\) có đường cao \(AH = 6cm,\widehat B = 40^\circ ,\widehat C = 35^\circ \). Tính độ dài các đoạn thẳng \(AB,BH,AC,BC\) (làm tròn kết quả đến hàng phần mười của centimét).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào các mối liên hệ giữa tỉ số lượng giác và các cạnh để giải bài toán.
Lời giải chi tiết

Xét tam giác \(ABH\) vuông tại \(H\), ta có:
+) \(AB = \frac{{AH}}{{\sin 40^\circ }} = \frac{6}{{\sin 40^\circ }} \approx 9,3\left( {cm} \right)\).
+) \(BH = \frac{{AH}}{{\tan 40^\circ }} = \frac{6}{{\tan 40^\circ }} \approx 7,2\left( {cm} \right)\).
Xét tam giác \(AHC\) vuông tại \(H\), ta có:
+) \(AC = \frac{{AH}}{{\sin 35^\circ }} = \frac{6}{{\sin 35^\circ }} \approx 10,5\left( {cm} \right)\).
+) \(CH = \frac{{AH}}{{\tan 35^\circ }} = \frac{6}{{\tan 35^\circ }} \approx 8,6\left( {cm} \right)\).
Ta có: \(BC = BH + HC \approx 7,2 + 8,6 \approx 15,8\left( {cm} \right)\).




