Giải bài tập 1.10 trang 14 SGK Toán 12 tập 1 - Cùng khám phá


Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau a) \(y = f(x) = \frac{{{x^3}}}{3} + 2{x^2} + 3x - 4\) trên đoạn \([ - 4;1]\) b) \(y = f(x) = x + \frac{1}{x} - 2\) trên khoảng \(( - \infty ;0)\) c) \(y = f(x) = \frac{{x - 2}}{{2x - 3}}\)trên nửa khoảng \([2;6)\) d) \(y = f(x) = \sqrt {4 - {x^2}} \) e) \(y = f(x) = {e^x} - x\)trên đoạn \([ - 1;2]\) f) \(y = f(x) = x\ln x\)trên đoạn \([{e^{ - 2}};e]\)

Đề bài

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau

a) \(y = f(x) = \frac{{{x^3}}}{3} + 2{x^2} + 3x - 4\) trên đoạn \([ - 4;1]\)

b) \(y = f(x) = x + \frac{1}{x} - 2\) trên khoảng \(( - \infty ;0)\)

c) \(y = f(x) = \frac{{x - 2}}{{2x - 3}}\) trên nửa khoảng \([2;6)\)

d) \(y = f(x) = \sqrt {4 - {x^2}} \)

e) \(y = f(x) = {e^x} - x\) trên đoạn \([ - 1;2]\)

f) \(y = f(x) = x\ln x\) trên đoạn \([{e^{ - 2}};e]\)

Phương pháp giải - Xem chi tiết

Bước 1 Tính \(f'(x)\)

Bước 2 Lập bảng biến thiên

Bước 3 Tìm cực trị của hàm số trên đoạn

Bước 4 Suy ra điểm có giá trị lớn nhất, điểm có giá trị bé nhất của hàm số trên các khoảng

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) \(y = f(x) = \frac{{{x^3}}}{3} + 2{x^2} + 3x - 4\) trên đoạn \([ - 4;1]\)

Hàm số trên xác định trên R

Ta có \(f'(x) = {x^2} + 4x + 3\)

Xét \(f'(x) = 0\)

\( \Rightarrow {x^2} + 4x + 3 = 0\) \( \Rightarrow \left[ \begin{array}{l}x =  - 1\\x =  - 3\end{array} \right.\)

Ta có bảng biến thiên

Từ bảng biến thiên ta có

Hàm số \(y = f(x) = \frac{{{x^3}}}{3} + 2{x^2} + 3x - 4\) đạt GTLN trên đoạn \([ - 4;1]\) tại x = 1 khi đó y = \(\frac{4}{3}\)

Hàm số \(y = f(x) = \frac{{{x^3}}}{3} + 2{x^2} + 3x - 4\) đạt GTNN trên đoạn \([ - 4;1]\) tại x = -4 và x= -1 khi đó y = \(\frac{{ - 16}}{3}\)

b) \(y = f(x) = x + \frac{1}{x} - 2\) trên khoảng \(( - \infty ;0)\)

Hàm số trên xác định trên R/{0}

Ta có \(f'(x) = 1 - \frac{1}{{{x^2}}} = \frac{{{x^2} - 1}}{{{x^2}}}\)

Xét \(f'(x) = 0\)

\( \Rightarrow {x^2} - 1 = 0\)

\( \Rightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\)

Ta có bảng biến thiên

Vậy hàm số \(y = f(x) = x + \frac{1}{x} - 2\) đạt GTLN trên khoảng \(( - \infty ;0)\) tại x=-1 khi đó y=-4

c) \(y = f(x) = \frac{{x - 2}}{{2x - 3}}\) trên nửa khoảng \([2;6)\)

Hàm số xác định trên R/\(\left\{ {\frac{3}{2}} \right\}\)

Ta có \(f'(x) = \frac{1}{{{{(2x - 3)}^2}}}\)

Vì \(f'(x) > 0\) với \(x \in R/\left\{ {\frac{3}{2}} \right\}\)

Nên hàm số luôn đồng biến với \(x \in R/\left\{ {\frac{3}{2}} \right\}\)

Khi đó ta có bảng biến thiên

Từ bảng biến thiên ta có:

Hàm số \(y = f(x) = \frac{{x - 2}}{{2x - 3}}\) đạt GTNN trên nửa khoảng \([2;6)\) tại x = 2 khi đó y = 0

d) \(y = f(x) = \sqrt {4 - {x^2}} \)

Hàm số xác định với \(\begin{array}{l}x \in [ - 2;2]\\\end{array}\)

Ta có \(f'(x) = \frac{{ - 2x}}{{2\sqrt {4 - {x^2}} }}\)

Xét \(f'(x) = 0\)\( \Rightarrow x = 0\)

Từ đó ta có bảng biến thiên

Từ bảng biến thiên, ta có:

Hàm sô \(y = f(x) = \sqrt {4 - {x^2}} \) đạt GTLN tại x = 0 khi đó y =2

Hàm sô \(y = f(x) = \sqrt {4 - {x^2}} \) đạt GTNN tại x = 2 và x= -2 khi đó y =2

e) \(y = f(x) = {e^x} - x\) trên khoảng \([ - 1;2]\)

Hàm số xác định trên R

Ta có \(f'(x) = {e^x} - 1\)

Xét \(f'(x) = 0\)

\( \Rightarrow {e^x} - 1 = 0\)

\( \Rightarrow x = 0\)

Từ đó ta có bảng biến thiên

Từ bảng biến thiên ta thấy

Hàm số\(y = f(x) = {e^x} - x\) đạt GTNN trên khoảng\([ - 1;2]\) tại x=0 khi đó y=0

Hàm số\(y = f(x) = {e^x} - x\) đạt GTNN trên khoảng\([ - 1;2]\) tại x=2 khi đó y=5,9

f) \(y = f(x) = x\ln x\) trên khoảng \([{e^{ - 2}};e]\)

Hàm số trên xác định với \(x \in \left( {0; + \infty } \right)\)

Ta có \(f'(x) = \ln x + 1\)

Xét \(f'(x) = \ln x + 1\) \( \Rightarrow x = {e^{ - 1}}\)

Từ đó ta có bảng biến thiên là

Từ bảng biến thiên ta có:

Hàm số\(y = f(x) = x\ln x\) đạt GTLN trên khoảng \([{e^{ - 2}};e]\) tại x=e khi đó y=e

Hàm số\(y = f(x) = x\ln x\) đạt GTLN trên khoảng \([{e^{ - 2}};e]\) tại x= \({e^{ - 1}}\) khi đó y= \( - {e^{ - 1}}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí