Giải bài 9 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 2


Công thức (log x = 11,8 + 1,5M) cho biết mối liên hệ giữa năng lượng x tạo ra (tính theo erg, 1erg tương đương với ({10^{ - 7}})jun) với độ lớn M theo thang Richter của một trận động đất.

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Công thức \(\log x = 11,8 + 1,5M\) cho biết mối liên hệ giữa năng lượng x tạo ra (tính theo erg, 1erg tương đương với \({10^{ - 7}}\)jun) với độ lớn M theo thang Richter của một trận động đất.

a) Trận động đất có độ lớn 5 độ Richter tạo ra năng lượng gấp bao nhiêu lần so với trận động đất có độ lớn 3 độ Richter?

b) Người ta ước lượng rằng một trận động đất có độ lớn khoảng từ 4 đến 6 độ Richter. Năng lượng do trận động đất đó tạo ra nằm trong khoảng nào?

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức về phép tính lôgarit để tính: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có: \({\log _a}\frac{M}{N} = {\log _a}M - {\log _a}N\)

b) Sử dụng kiến thức về giải bất phương trình lôgarit để giải bất phương trình:

Bảng tổng kết về nghiệm của các bất phương trình:

Bất phương trình

\(a > 1\)

\(0 < a < 1\)

\({\log _a}x > b\)

\(x > {a^b}\)

\(0 < x < {a^b}\)

\({\log _a}x \ge b\)

\(x \ge {a^b}\)

\(0 < x \le {a^b}\)

\({\log _a}x < b\)

\(0 < x < {a^b}\)

\(x > {a^b}\)

\({\log _a}x \le b\)

\(0 < x \le {a^b}\)

\(x \ge {a^b}\)

Chú ý:

+ Nếu \(a > 1\) thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}v\left( x \right) > 0\\u\left( x \right) > v\left( x \right)\end{array} \right.\)

+ Nếu \(0 < a < 1\) thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) < v\left( x \right)\end{array} \right.\)

Lời giải chi tiết

a) Gọi \({x_1},{x_2}\) (erg) lần lượt là năng lượng tạo ra của hai trận động đất có độ lớn lần lượt là \({M_1} = 5,{M_2} = 3\) (độ Richter)

Ta có: \(\log {x_1} = 11,8 + 1,5{M_1};\log {x_2} = 11,8 + 1,5{M_2}\)

Do đó, \(\log {x_1} - \log {x_2} = 1,5\left( {{M_1} - {M_2}} \right) \Rightarrow \log \frac{{{x_1}}}{{{x_2}}} = 3 \) \( \Leftrightarrow \frac{{{x_1}}}{{{x_2}}} = {10^3} = 1000\)

Vậy trận động đất có độ lớn 5 độ Richter tạo ra năng lượng gấp 1000 lần so với trận động đất có độ lớn 3 độ Richter.

b) Theo đầu bài ta có:

\(11,8 + 1,5.4 \le \log x \le 11,8 + 1,5.6 \) \( \Leftrightarrow 17,8 \le \log x \le 20,8 \) \( \Leftrightarrow {10^{17,8}} \le x \le {10^{20,8}}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí