 Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                                                
                            Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                         Bài 20. Định lí Viète và ứng dụng trang 20, 21, 22 Vở t..
                                                        Bài 20. Định lí Viète và ứng dụng trang 20, 21, 22 Vở t..
                                                    Giải bài 8 trang 24 vở thực hành Toán 9 tập 2>
Tìm m để phương trình ({x^2} + 4x + m = 0) có hai nghiệm ({x_1},{x_2}) thỏa mãn (x_1^2 + x_2^2 = 10).
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Tìm m để phương trình \({x^2} + 4x + m = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 10\).
Phương pháp giải - Xem chi tiết
+ Tìm điều kiện của m để phương trình đã cho có nghiệm và viết định lí Viète để tính \({x_1} + {x_2};{x_1}.{x_2}\).
+ Biến đổi \(x_1^2 + x_2^2 = \left( {x_1^2 + 2{x_1}{x_2} + x_2^2} \right) - 2{x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\).
+ Thay \({x_1} + {x_2};{x_1}.{x_2}\) đã tính theo định lí Viète vào biểu thức vừa biến đổi, ta được phương trình ẩn m, từ đó tìm m, đối chiếu với điều kiện của m và đưa ra kết luận.
Lời giải chi tiết
Phương trình có nghiệm khi \(\Delta ' = 4 - m \ge 0\), tức là \(m \le 4\). Khi đó, phương trình có hai nghiệm \({x_1},{x_2}\). Theo định lí Viète ta có: \({x_1} + {x_2} = - 4;{x_1}.{x_2} = m\).
Do đó:
\(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} \\= {\left( { - 4} \right)^2} - 2m = 16 - 2m = 10\)
suy ra, \(2m = 6\), hay \(m = 3\) (thỏa mãn điều kiện để phương trình có nghiệm).
Vậy với \(m = 3\) thì phương trình đã cho có hai nghiệm thỏa mãn yêu cầu đề bài.
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 7 trang 24 vở thực hành Toán 9 tập 2
- Giải bài 6 trang 23, 24 vở thực hành Toán 9 tập 2
- Giải bài 5 trang 23 vở thực hành Toán 9 tập 2
- Giải bài 4 trang 22, 23 vở thực hành Toán 9 tập 2
- Giải bài 3 trang 22 vở thực hành Toán 9 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            