Giải bài 8 (7.46) trang 55 vở thực hành Toán 7 tập 2>
Hai bạn Tròn và Vuông tranh luận như sau: Vuông: Đa thức (Mleft( x right) = {x^3} + 1) có thể viết được thành tổng của hai đa thức bậc 2. Tròn: Không thể như thế được. Nhưng M(x) có thể viết được thành tổng của hai đa thức bậc bốn. Hãy cho biết ý kiến của em và nêu một ví dụ minh họa.
Đề bài
Hai bạn Tròn và Vuông tranh luận như sau:
Vuông: Đa thức \(M\left( x \right) = {x^3} + 1\) có thể viết được thành tổng của hai đa thức bậc 2.
Tròn: Không thể như thế được. Nhưng M(x) có thể viết được thành tổng của hai đa thức bậc bốn.
Hãy cho biết ý kiến của em và nêu một ví dụ minh họa.
Phương pháp giải - Xem chi tiết
Tổng của các đa thức là đa thức có bậc không lớn hơn bậc của các đa thức thành phần.
Lời giải chi tiết
- Từ công thức \(a{x^2} + b{x^2} = \left( {a + b} \right){x^2}\), ta có nhận xét rằng tổng của hai hạng tử bậc cao nhất của 2 đa thức là bậc hai, nếu khác 0, cũng là hạng tử bậc hai. Do đó, việc cộng hai đa thức bậc hai không thể làm xuất hiện thêm hạng tử có bậc lớn hơn hai.
Điều này có nghĩa là đa thức \(M\left( x \right) = {x^3} + 1\) không thể viết được thành tổng của hai đa thức bậc 2.
- Vậy ý kiến của Vuông là sai.
- Chẳng hạn ta có \( - {x^4} + {x^3} + 1\) và \({x^4}\) là hai đa thức bậc 4, và tổng của chúng bằng đa thức bậc ba \({x^3} + 1\). Vậy ý kiến của Tròn là đúng.
- Giải bài 7 trang 54, 55 vở thực hành Toán 7 tập 2
- Giải bài 6 trang 54 vở thực hành Toán 7 tập 2
- Giải bài 5 (7.45) trang 54 vở thực hành Toán 7 tập 2
- Giải bài 4 (7.44) trang 53, 54 vở thực hành Toán 7 tập 2
- Giải bài 3 trang 53 vở thực hành Toán 7 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay