Giải bài 7 trang 16 vở thực hành Toán 7 tập 2


Khi tổng kết cuối năm học người ta thấy số học sinh giỏi ở một trường Trung học cơ sở phân bố ở các khối 6, 7, 8, 9 theo tỉ lệ 1,5; 1,4; 1,3 và 1,2. Tính số học sinh giỏi của mỗi khối biết tổng số học sinh giỏi của cả trường là 162 em.

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Khi tổng kết cuối năm học người ta thấy số học sinh giỏi ở một trường Trung học cơ sở phân bố ở các khối 6, 7, 8, 9 theo tỉ lệ 1,5; 1,4; 1,3 và 1,2. Tính số học sinh giỏi của mỗi khối biết tổng số học sinh giỏi của cả trường là 162 em.

Phương pháp giải - Xem chi tiết

+ Nếu x, y, z, t lần lượt tỉ lệ với a, b, c, d nghĩa là ta có \(\frac{x}{a} = \frac{y}{b} = \frac{z}{c} = \frac{t}{d}\).

+ Áp dụng tính chất của dãy tỉ số bằng nhau \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{g}{h} = \frac{{a + c + e + g}}{{b + d + f + h}}\).

Lời giải chi tiết

Gọi x, y, z, t lần lượt là số học sinh giỏi của mỗi khối lớp 6, 7, 8, 9.

Theo đề bài, ta có \(\frac{x}{{1,5}} = \frac{y}{{1,4}} = \frac{z}{{1,3}} = \frac{t}{{1,2}}\) và \(x + y + z + t = 162\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{1,5}} = \frac{y}{{1,4}} = \frac{z}{{1,3}} = \frac{t}{{1,2}} = \frac{{x + y + z + t}}{{1,5 + 1,4 + 1,3 + 1,2}} = \frac{{162}}{{5,4}} = 30\)

Suy ra \(x = 30.1,5 = 45;y = 30.1,4 = 42;\) \(z = 30.1,3 = 39;t = 30.1,2 = 36\).

Vậy số học sinh giỏi của mỗi khối lớp 6, 7, 8, 9 lần lượt là 45, 42, 39 và 36 học sinh.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí