Giải bài 7 trang 16 vở thực hành Toán 7 tập 2>
Khi tổng kết cuối năm học người ta thấy số học sinh giỏi ở một trường Trung học cơ sở phân bố ở các khối 6, 7, 8, 9 theo tỉ lệ 1,5; 1,4; 1,3 và 1,2. Tính số học sinh giỏi của mỗi khối biết tổng số học sinh giỏi của cả trường là 162 em.
Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên...
Đề bài
Khi tổng kết cuối năm học người ta thấy số học sinh giỏi ở một trường Trung học cơ sở phân bố ở các khối 6, 7, 8, 9 theo tỉ lệ 1,5; 1,4; 1,3 và 1,2. Tính số học sinh giỏi của mỗi khối biết tổng số học sinh giỏi của cả trường là 162 em.
Phương pháp giải - Xem chi tiết
+ Nếu x, y, z, t lần lượt tỉ lệ với a, b, c, d nghĩa là ta có \(\frac{x}{a} = \frac{y}{b} = \frac{z}{c} = \frac{t}{d}\).
+ Áp dụng tính chất của dãy tỉ số bằng nhau \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{g}{h} = \frac{{a + c + e + g}}{{b + d + f + h}}\).
Lời giải chi tiết
Gọi x, y, z, t lần lượt là số học sinh giỏi của mỗi khối lớp 6, 7, 8, 9.
Theo đề bài, ta có \(\frac{x}{{1,5}} = \frac{y}{{1,4}} = \frac{z}{{1,3}} = \frac{t}{{1,2}}\) và \(x + y + z + t = 162\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{1,5}} = \frac{y}{{1,4}} = \frac{z}{{1,3}} = \frac{t}{{1,2}} = \frac{{x + y + z + t}}{{1,5 + 1,4 + 1,3 + 1,2}} = \frac{{162}}{{5,4}} = 30\)
Suy ra \(x = 30.1,5 = 45;y = 30.1,4 = 42;\) \(z = 30.1,3 = 39;t = 30.1,2 = 36\).
Vậy số học sinh giỏi của mỗi khối lớp 6, 7, 8, 9 lần lượt là 45, 42, 39 và 36 học sinh.
- Giải bài 6 (6.21) trang 15, 16 vở thực hành Toán 7 tập 2
- Giải bài 5 (6.20) trang 15 vở thực hành Toán 7 tập 2
- Giải bài 4 (6.19) trang 15 vở thực hành Toán 7 tập 2
- Giải bài 3 trang 15 vở thực hành Toán 7 tập 2
- Giải bài 2 (6.18) trang 14, 15 vở thực hành Toán 7 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay