Giải bài 6.30 trang 15 sách bài tập toán 11 - Kết nối tri thức với cuộc sống


Trong Vật lí, mức cường độ âm (tính bằng deciben, kí hiệu là dB)

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Trong Vật lí, mức cường độ âm (tính bằng deciben, kí hiệu là dB) được tính bởi công thức \(L = 10{\rm{log}}\frac{I}{{{I_0}}}\), trong đó \(I\) là cường độ âm tính theo W/m² và \({I_0} = {10^{ - 12}}{\rm{\;W}}/{{\rm{m}}^2}\)  là cường độ âm chuẩn, tức là cường độ âm thấp nhất mà tai người có thể nghe được.

a) Tính mức cường độ âm của một cuộc trò chuyện bình thường có cường độ âm là \({10^{ - 7}}{\rm{\;W}}/{{\rm{m}}^2}\).

b) Khi cường độ âm tăng lên 1000 lần thì mức cường độ âm (đại lượng đặc trưng cho độ to nhỏ của âm) thay đổi thế nào?

Phương pháp giải - Xem chi tiết

a) Tính \(L = 10{\rm{log}}\frac{I}{{{I_0}}}\) khi \(I = {10^{ - 7}}{\rm{\;W}}/{{\rm{m}}^2}\),\({I_0} = {10^{ - 12}}{\rm{\;W}}/{{\rm{m}}^2}\).

b) So sánh \(L' = 10{\rm{log}}\frac{{1000I}}{{{I_0}}}\) với \(L = 10{\rm{log}}\frac{I}{{{I_0}}}\).

Xét \(L' - L = 10\log \frac{{1000I}}{{{I_0}}} - 10\log \frac{{1000I}}{{{I_0}}} = 10\log \left( {\frac{{1000I}}{{{I_0}}}:\frac{{1000I}}{{{I_0}}}} \right) = 30\)

Lời giải chi tiết

a) Mức cường độ âm của cuộc trò chuyện bình thường có cường độ âm \({10^{ - 7}}{\rm{\;W}}/{{\rm{m}}^2}\) là \(L = 10{\rm{log}}\frac{{{{10}^{ - 7}}}}{{{{10}^{ - 12}}}} = 50\left( {{\rm{\;dB}}} \right)\).

b) Ta có: \(10{\rm{log}}\frac{{1000I}}{{{I_0}}} - {\rm{log}}\frac{I}{{{I_0}}} = 10 \cdot \left( {{\rm{log}}\frac{{1000I}}{{{I_0}}} - {\rm{log}}\frac{I}{{{I_0}}}} \right) = 10\log \left( {\frac{{1000I}}{{{I_0}}}:\frac{{1000I}}{{{I_0}}}} \right) = 10\log 1000 = 30\). Vậy mức cường độ âm tăng lên\(30{\rm{ }}dB\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí