Giải bài 4.30 trang 18 sách bài tập toán 12 - Kết nối tri thức>
Một trận dịch lây lan đến mức sau khi bùng phát t tuần số người nhiễm bệnh là ({N_1}left( t right) = 0,1{t^2} + 0,5t + 150,0 le t le 50). Hai mươi lăm tuần sau khi dịch bệnh bùng phát, một loại vắc xin đã được phát triển và tiêm cho công chúng. Khi đó, số người nhiễm bệnh được điều chỉnh theo mô hình ({N_2}left( t right) = - 0,2{t^2} + 6t + 200,25 le t le 50). a) Tìm thời điểm t để sau khi tiêm vắc xin thì dịch bệnh kết thúc, tức là số người nhiễm bệnh là ({N_2}left( t right)
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Một trận dịch lây lan đến mức sau khi bùng phát t tuần số người nhiễm bệnh là
\({N_1}\left( t \right) = 0,1{t^2} + 0,5t + 150,0 \le t \le 50\).
Hai mươi lăm tuần sau khi dịch bệnh bùng phát, một loại vắc xin đã được phát triển và tiêm cho công chúng. Khi đó, số người nhiễm bệnh được điều chỉnh theo mô hình
\({N_2}\left( t \right) = - 0,2{t^2} + 6t + 200,25 \le t \le 50\).
a) Tìm thời điểm t để sau khi tiêm vắc xin thì dịch bệnh kết thúc, tức là số người nhiễm bệnh là \({N_2}\left( t \right) = 0\).
b) Ước tính gần đúng số người mà vắc xin đã ngăn ngừa khỏi dịch bệnh trong thời gian xảy ra dịch bệnh.
Phương pháp giải - Xem chi tiết
Ý a: t là nghiệm của phương trình \({N_2}\left( t \right) = 0\) với \(25 \le t \le 50\).
Ý b: Tính \(\int\limits_{25}^{50} {\left[ {{N_1}\left( t \right) - {N_2}\left( t \right)} \right]dt} \)
Lời giải chi tiết
a) Xét phương trình \({N_2}\left( t \right) = 0 \Leftrightarrow - 0,2{t^2} + 6t + 200 = 0 \Leftrightarrow t = 50\) (thỏa mãn) hoặc \(t = - 20\) (không thỏa mãn). Do đó sau 50 tuần thì dịch bệnh kết thúc.
b) Như vậy khi có vắc xin tiêm cho công chúng từ tuần thứ 25 tới tuần thứ 50 thì kết thúc dịch (theo mô hình chỉ ra).
Số người mà vắc xin đã ngăn ngừa khỏi dịch bệnh trong thời gian xảy ra dịch bệnh là
\(\int\limits_{25}^{50} {\left( {{N_1} - {N_2}} \right)dt = } \int\limits_{25}^{50} {\left( {0,3{t^2} - 5,5t - 50} \right)dt = } \left. {\left( {0,1{t^3} - 5,5 \cdot \frac{{{t^2}}}{2} - 50t} \right)} \right|_{25}^{50} \approx 4531\).
- Giải bài 4.29 trang 18 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 4.28 trang 18 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 4.27 trang 18 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 4.26 trang 18 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 4.25 trang 17 sách bài tập toán 12 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Đề minh họa kiểm tra cuối học kì 2 - SBT Toán 12 Kết nối tri thức
- Giải bài 45 trang 56 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 44 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 43 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 42 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Đề minh họa kiểm tra cuối học kì 2 - SBT Toán 12 Kết nối tri thức
- Giải bài 45 trang 56 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 44 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 43 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 42 trang 55 sách bài tập toán 12 - Kết nối tri thức