Giải bài 4.28 trang 18 sách bài tập toán 12 - Kết nối tri thức


Chi phí nhiên liệu dự kiến C (tính bằng triệu đô la mỗi năm) khi sử dụng một loại xe tải của một công ty vận tải từ năm 2020 đến năm 2030 là ({C_1} = 5,6 + 2,2t,{rm{ }}0 le t le 10), trong đó (t = 0) tương ứng với năm 2020. Nếu công ty sử dụng một loại xe tải khác có động cơ hiệu quả hơn thì chi phí nhiên liệu dự kiến sẽ giảm và tuân theo mô hình ({C_2} = 4,7 + 2,04t,{rm{ }}0 le t le 10). Công ty có thể tiết kiệm được bao nhiêu khi sử dụng xe tải với động cơ hiệu quả hơn?

Đề bài

Chi phí nhiên liệu dự kiến C (tính bằng triệu đô la mỗi năm) khi sử dụng một loại xe tải của một công ty vận tải từ năm 2020 đến năm 2030 là \({C_1} = 5,6 + 2,2t,{\rm{ }}0 \le t \le 10\), trong đó \(t = 0\) tương ứng với năm 2020. Nếu công ty sử dụng một loại xe tải khác có động cơ hiệu quả hơn thì chi phí nhiên liệu dự kiến sẽ giảm và tuân theo mô hình \({C_2} = 4,7 + 2,04t,{\rm{ }}0 \le t \le 10\). Công ty có thể tiết kiệm được bao nhiêu khi sử dụng xe tải với động cơ hiệu quả hơn?

Phương pháp giải - Xem chi tiết

Chi phí nhiên liệu dự kiến khi sử dụng loại xe thứ nhất và thứ hai trong 10 năm lần lượt là \(\int\limits_0^{10} {{C_1}dt} \) và \(\int\limits_0^{10} {{C_2}dt} \) sau đó tính hiệu hai giá trị này.

Lời giải chi tiết

Chi phí nhiên liệu dự kiến khi sử dụng loại xe thứ nhất trong 10 năm là

\(\int\limits_0^{10} {\left( {5,6 + 2,2t} \right)dt}  = \left. {\left( {5,6t + 1,1{t^2}} \right)} \right|_0^{10} = 5,6 \cdot 10 + 1,1 \cdot {10^2} = 166\) (triệu đô la).

Chi phí nhiên liệu dự kiến khi sử dụng một loại xe tải khác trong 10 năm là

\(\int\limits_0^{10} {\left( {4,7 + 2,04t} \right)dt}  = \left. {\left( {4,7t + 1,02{t^2}} \right)} \right|_0^{10} = 4,7 \cdot 10 + 1,02 \cdot {10^2} = 149\) (triệu đô la).

Suy ra khi sử dụng loại xe tải mới, công ty tiết kiệm được là

\(166 - 149 = 17\) (triệu đô la)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí