Giải bài 4 trang 8 sách bài tập toán 12 - Cánh diều>
Hàm số (y = {e^{ - 5{rm{x}} + 4}}) là nguyên hàm của hàm số: A. (y = frac{1}{{{e^{ - 5{rm{x}} + 4}}}}). B. (y = {e^{ - 5{rm{x}} + 4}}). C. (y = frac{{{e^{ - 5{rm{x}} + 4}}}}{{ - 5}}). D. (y = - 5{e^{ - 5{rm{x}} + 4}}).
Đề bài
Hàm số \(y = {e^{ - 5{\rm{x}} + 4}}\) là nguyên hàm của hàm số:
A. \(y = \frac{1}{{{e^{ - 5{\rm{x}} + 4}}}}\).
B. \(y = {e^{ - 5{\rm{x}} + 4}}\).
C. \(y = \frac{{{e^{ - 5{\rm{x}} + 4}}}}{{ - 5}}\).
D. \(y = - 5{e^{ - 5{\rm{x}} + 4}}\).
Phương pháp giải - Xem chi tiết
Sử dụng khái niệm nguyên hàm: Hàm số \(F\left( x \right)\) được gọi là nguyên hàm của hàm số \(f\left( x \right)\) trên \(K\) nếu \(F'\left( x \right) = f\left( x \right)\) với mọi \(x\) thuộc \(K\).
Lời giải chi tiết
Ta có: \(y' = {\left( {{e^{ - 5{\rm{x}} + 4}}} \right)^\prime } = {\left( { - 5{\rm{x}} + 4} \right)^\prime }.{e^{ - 5{\rm{x}} + 4}} = - 5{e^{ - 5{\rm{x}} + 4}}\).
Vậy hàm số \(y = {e^{ - 5{\rm{x}} + 4}}\) là nguyên hàm của hàm số \(y = - 5{e^{ - 5{\rm{x}} + 4}}\).
Chọn D.
- Giải bài 5 trang 8 sách bài tập toán 12 - Cánh diều
- Giải bài 6 trang 8 sách bài tập toán 12 - Cánh diều
- Giải bài 7 trang 8 sách bài tập toán 12 - Cánh diều
- Giải bài 8 trang 9 sách bài tập toán 12 - Cánh diều
- Giải bài 9 trang 9 sách bài tập toán 12 - Cánh diều
>> Xem thêm