Giải bài 4 trang 130, 131 vở thực hành Toán 9 tập 2>
Giải các phương trình sau: a) (frac{2}{{x + 1}} - frac{{2x}}{{{x^2} - x + 1}} = frac{3}{{{x^3} + 1}}); b) (frac{{x + 1}}{{2x - 1}} - frac{2}{{2x + 1}} = frac{{2{x^2}}}{{4{x^2} - 1}}).
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Đề bài
Giải các phương trình sau:
a) \(\frac{2}{{x + 1}} - \frac{{2x}}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}\);
b) \(\frac{{x + 1}}{{2x - 1}} - \frac{2}{{2x + 1}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\).
Phương pháp giải - Xem chi tiết
Để giải phương trình chứa ẩn ở mẫu ta thường thực hiện các bước như sau:
Bước 1. Tìm điều kiện xác định của phương trình.
Bước 2. Quy đồng mẫu hai vế của phương trình rồi khử mẫu.
Bước 3. Giải phương trình vừa tìm được.
Bước 4 (Kết luận). Trong các giá trị tìm được của ẩn ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho.
Lời giải chi tiết
a) ĐKXĐ: \(x \ne - 1\). Ta có:
\(\frac{2}{{x + 1}} - \frac{{2x}}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}\)
\(\frac{{2\left( {{x^2} - x + 1} \right) - 2x\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{3}{{{x^3} + 1}}\)
\(\frac{{ - 4x + 2}}{{{x^3} + 1}} = \frac{3}{{{x^3} + 1}}\)
\( - 4x + 2 = 3\)
\(x = - \frac{1}{4}\) (thỏa mãn ĐKXĐ)
Vậy phương trình đã cho có nghiệm là \(x = - \frac{1}{4}\).
b) ĐKXĐ: \(x \ne \pm \frac{1}{2}\). Ta có:
\(\frac{{x + 1}}{{2x - 1}} - \frac{2}{{2x + 1}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\)
\(\frac{{\left( {x + 1} \right)\left( {2x + 1} \right) - 2\left( {2x - 1} \right)}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\)
\(\frac{{2{x^2} - x + 3}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\)
\(2{x^2} - x + 3 = 2{x^2}\)
\(x = 3\) (thỏa mãn ĐKXĐ)
Vậy phương trình đã cho có nghiệm \(x = 3\).
- Giải bài 5 trang 131 vở thực hành Toán 9 tập 2
- Giải bài 6 trang 132, 133 vở thực hành Toán 9 tập 2
- Giải bài 7 trang 133 vở thực hành Toán 9 tập 2
- Giải bài 8 trang 133, 134 vở thực hành Toán 9 tập 2
- Giải bài 9 trang 134 vở thực hành Toán 9 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay