Giải bài 3 trang 130 vở thực hành Toán 9 tập 2>
Giải các bất phương trình sau: a) ( - 6x + 3left( {x + 1} right) > 4x - left( {x - 4} right)); b) (left( {2x + 1} right)left( {2x - 1} right) < 4{x^2} - 4x + 1).
Đề bài
Giải các bất phương trình sau:
a) \( - 6x + 3\left( {x + 1} \right) > 4x - \left( {x - 4} \right)\);
b) \(\left( {2x + 1} \right)\left( {2x - 1} \right) < 4{x^2} - 4x + 1\).
Phương pháp giải - Xem chi tiết
+ Đưa bất phương trình về dạng bất phương trình bậc nhất một ẩn \(ax + b < 0\left( {a \ne 0} \right)\).
+ Bất phương trình \(ax + b < 0\left( {a \ne 0} \right)\) được giải như sau:
\(ax + b < 0\)
\(ax < - b\)
Nếu \(a > 0\) thì \(x < - \frac{b}{a}\).
Nếu \(a < 0\) thì \(x > - \frac{b}{a}\).
Bất phương trình \(ax + b > 0\left( {a \ne 0} \right)\) ta giải tương tự.
Lời giải chi tiết
a) \( - 6x + 3\left( {x + 1} \right) > 4x - \left( {x - 4} \right)\)
\( - 6x + 3x + 3 > 4x - x + 4\)
\( - 6x + 3x - 4x + x > 4 - 3\)
\( - 6x > 1\)
\(x < \frac{{ - 1}}{6}\).
b) \(\left( {2x + 1} \right)\left( {2x - 1} \right) < 4{x^2} - 4x + 1\)
\(4{x^2} - 1 < 4{x^2} - 4x + 1\)
\(4{x^2} - 4{x^2} + 4x < 1 + 1\)
\(4x < 2\)
\(x < \frac{1}{2}\).
- Giải bài 4 trang 130, 131 vở thực hành Toán 9 tập 2
- Giải bài 5 trang 131 vở thực hành Toán 9 tập 2
- Giải bài 6 trang 132, 133 vở thực hành Toán 9 tập 2
- Giải bài 7 trang 133 vở thực hành Toán 9 tập 2
- Giải bài 8 trang 133, 134 vở thực hành Toán 9 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay