Giải bài 2 trang 45 sách bài tập toán 12 - Chân trời sáng tạo>
Lập phương trình mặt phẳng \(\left( P \right)\) trong mỗi trường hợp sau: a) \(\left( P \right)\) đi qua điểm \(M\left( {1;2;3} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 2} \right)\); b) \(\left( P \right)\) đi qua điểm \(N\left( { - 2;3;0} \right)\) và có cặp vectơ chỉ phương \(\overrightarrow u = \left( {1;1;1} \right),\overrightarrow v = \left( {3;0;4} \right)\). c) \(\left( P \right)\) đi qua ba điểm \(A\left( {1;2;2} \right),B\left( {5;3;2} \right),C\lef
Đề bài
Lập phương trình mặt phẳng \(\left( P \right)\) trong mỗi trường hợp sau:
a) \(\left( P \right)\) đi qua điểm \(M\left( {1;2;3} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 2} \right)\);
b) \(\left( P \right)\) đi qua điểm \(N\left( { - 2;3;0} \right)\) và có cặp vectơ chỉ phương \(\overrightarrow u = \left( {1;1;1} \right),\overrightarrow v = \left( {3;0;4} \right)\).
c) \(\left( P \right)\) đi qua ba điểm \(A\left( {1;2;2} \right),B\left( {5;3;2} \right),C\left( {2;4;2} \right)\);
d) \(\left( P \right)\) cắt ba trục toạ độ lần lượt tại các điểm \(M\left( {3;0;0} \right),N\left( {0;1;0} \right),P\left( {0;0;2} \right)\).
Phương pháp giải - Xem chi tiết
‒ Lập phương trình tổng quát của mặt phẳng đi qua một điểm và biết vectơ pháp tuyến: Phương trình mặt phẳng đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\) là
\(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\)
hay \(Ax + By + C{\rm{z}} + D = 0\) với \(D = - A{x_0} - B{y_0} - C{{\rm{z}}_0}\).
‒ Lập phương trình tổng quát của mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và biết cặp vectơ chỉ phương \(\overrightarrow a ,\overrightarrow b \):
Bước 1: Tìm một vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow a ,\overrightarrow b } \right]\).
Bước 2: Lập phương trình mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n \).
‒ Lập phương trình tổng quát của mặt phẳng đi qua ba điểm không thẳng hàng \(A,B,C\):
Bước 1: Tìm cặp vectơ chỉ phương, chẳng hạn \(\overrightarrow {AB} ,\overrightarrow {AC} \).
Bước 2: Tìm một vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\).
Bước 3: Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(A\) và có vectơ pháp tuyến \(\overrightarrow n \).
‒ Phương trình mặt phẳng theo đoạn chắn: Phương trình mặt phẳng đi qua ba điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) với \(a,b,c \ne 0\) có dạng \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\).
Lời giải chi tiết
a) Phương trình mặt phẳng \(\left( P \right)\) là:
\(3\left( {x - 1} \right) + \left( {y - 2} \right) - 2\left( {z - 3} \right) = 0 \Leftrightarrow 3{\rm{x}} + y - 2z + 1 = 0\).
b) Ta có: \(\left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {1.4 - 1.0;1.3 - 1.4;1.0 - 1.3} \right) = \left( {4; - 1; - 3} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\).
Phương trình mặt phẳng \(\left( P \right)\) là:
\(4\left( {x + 2} \right) - \left( {y - 3} \right) - 3\left( {z - 0} \right) = 0 \Leftrightarrow 4x - y - 3z + 11 = 0\).
c) Ta có: \(\overrightarrow {AB} = \left( {4;1;0} \right),\overrightarrow {AC} = \left( {1;2;0} \right)\).
Khi đó, \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1.0 - 0.2;0.1 - 4.0;4.2 - 1.1} \right) = \left( {0;0;7} \right)\) là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).
Phương trình mặt phẳng \(\left( P \right)\) là:
\(0\left( {x - 1} \right) + 0\left( {y - 2} \right) + 7\left( {z - 2} \right) = 0 \Leftrightarrow 7\left( {z - 2} \right) = 0 \Leftrightarrow z - 2 = 0\).
d) Phương trình mặt phẳng đi qua ba điểm \(M\left( {3;0;0} \right),N\left( {0;1;0} \right),P\left( {0;0;2} \right)\) là:
\(\frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1 \Leftrightarrow 2{\rm{x}} + 6y + 3{\rm{z}} = 6 \Leftrightarrow 2{\rm{x}} + 6y + 3{\rm{z}} - 6 = 0\).
- Giải bài 3 trang 45 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 45 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 46 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 46 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 46 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo