Giải bài 17 trang 98 sách bài tập toán 12 - Cánh diều


Bảng 22 thống kê độ ẩm không khí trung bình các tháng năm 2022 tại Đà Nẵng và Quy Nhơn (đơn vị: %). a) Hãy lần lượt ghép các số liệu của Đà Nẵng, Quy Nhơn thành năm nhóm sau: \(\left[ {71;74} \right),\)\(\left[ {74;77} \right),\left[ {77;80} \right),\left[ {80;83} \right),\left[ {83;86} \right)\). b) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Nẵng và Quy Nhơn.

Đề bài

Bảng 22 thống kê độ ẩm không khí trung bình các tháng năm 2022 tại Đà Nẵng và Quy Nhơn (đơn vị: %).

a) Hãy lần lượt ghép các số liệu của Đà Nẵng, Quy Nhơn thành năm nhóm sau: \(\left[ {71;74} \right),\)\(\left[ {74;77} \right),\left[ {77;80} \right),\left[ {80;83} \right),\left[ {83;86} \right)\).

b) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Nẵng và Quy Nhơn.

Phương pháp giải - Xem chi tiết

‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).

‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:

+ Nhóm thứ \(p\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4}\) (tức là \(c{f_{p - 1}} < \frac{n}{4}\) nhưng \(c{f_p} \ge \frac{n}{4}\)). Ta gọi \(s,h,{n_p}\) lần lượt là đầu mút trái, độ dài, tần số của nhóm \(p\), \(c{f_{p - 1}}\) là tần số tích luỹ của nhóm thứ \(p - 1\). Khi đó: \({Q_1} = s + \left( {\frac{{\frac{n}{4} - c{f_{p - 1}}}}{{{n_p}}}} \right).h\).

+ Nhóm thứ \(q\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4}\) (tức là \(c{f_{q - 1}} < \frac{{3n}}{4}\) nhưng \(c{f_q} \ge \frac{{3n}}{4}\)). Ta gọi \(t,l,{n_q}\) lần lượt là đầu mút trái, độ dài, tần số của nhóm \(q\), \(c{f_{q - 1}}\) là tần số tích luỹ của nhóm thứ \(q - 1\). Khi đó: \({Q_3} = t + \left( {\frac{{\frac{{3n}}{4} - c{f_{q - 1}}}}{{{n_q}}}} \right).l\).

‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).

‒ Sử dụng công thức tính số trung bình cộng của mẫu số liệu ghép nhóm: \(\overline x  = \frac{{{m_1}{x_1} + ... + {m_k}{x_k}}}{n}\)trong đó \(n = {m_1} + ... + {m_k}\) là cỡ mẫu và \({x_i} = \frac{{{a_i} + {a_{i + 1}}}}{2}\) (với \(i = 1,...,k\)) là giá trị đại diện của nhóm \(\left[ {{a_i};{a_{i + 1}}} \right)\).

‒ Sử dụng công thức tính phương sai của mẫu số liệu ghép nhóm:

\({s^2} = \frac{{{n_1}{{\left( {{x_1} - \overline x } \right)}^2} + {n_2}{{\left( {{x_2} - \overline x } \right)}^2} + ... + {n_m}{{\left( {{x_m} - \overline x } \right)}^2}}}{n}\)

‒ Sử dụng công thức tính độ lệch chuẩn của mẫu số liệu ghép nhóm: \(s = \sqrt {{s^2}} \).

Lời giải chi tiết

a) Ta có bảng sau:

b) • Đà Nẵng:

Khoảng biến thiên của mẫu số liệu ghép nhóm là: \(R = 86 - 71 = 15\).

Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{12}}{4} = 3\).

Nhóm 3 có đầu mút trái \(s = 77\), độ dài \(h = 3\), tần số của nhóm \({n_3} = 2\) và nhóm 2 có tần số tích luỹ \(c{f_2} = 1 + 1 = 2\).

Ta có: \({Q_1} = s + \left( {\frac{{3 - c{f_2}}}{{{n_3}}}} \right).h = 77 + \left( {\frac{{3 - 2}}{2}} \right).3 = 78,5\) (%).

Nhóm 4 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\).

Nhóm 4 có đầu mút trái \(t = 80\), độ dài \(l = 3\), tần số của nhóm \({n_4} = 6\) và nhóm 3 có tần số tích luỹ \(c{f_3} = 1 + 1 + 2 = 4\).

Ta có: \({Q_3} = t + \left( {\frac{{9 - c{f_3}}}{{{n_4}}}} \right).l = 80 + \left( {\frac{{9 - 4}}{6}} \right).3 = 82,5\) (%).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = 82,5 - 78,5 = 4\) (%).

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\overline x  = \frac{{1.72,5 + 1.75,5 + 2.78,5 + 6.81,5 + 2.84,5}}{{12}} = 80,25\)

Phương sai của mẫu số liệu ghép nhóm đó là:

\(\begin{array}{l}{s^2} = \frac{1}{{12}}\left[ {1.{{\left( {72,5 - 80,25} \right)}^2} + 1.{{\left( {75,5 - 80,25} \right)}^2} + 2.{{\left( {78,5 - 80,25} \right)}^2} + 6.{{\left( {81,5 - 80,25} \right)}^2} + } \right.\\\left. { + 2.{{\left( {84,5 - 80,25} \right)}^2}} \right] = 11,1875\end{array}\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(s = \sqrt {11,1875}  \approx 3,3448\).

• Quy Nhơn:

Khoảng biến thiên của mẫu số liệu ghép nhóm là: \(R = 86 - 71 = 15\).

Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{12}}{4} = 3\).

Nhóm 3 có đầu mút trái \(s = 77\), độ dài \(h = 3\), tần số của nhóm \({n_3} = 4\) và nhóm 2 có tần số tích luỹ \(c{f_2} = 1 + 1 = 2\).

Ta có: \({Q_1} = s + \left( {\frac{{3 - c{f_2}}}{{{n_3}}}} \right).h = 77 + \left( {\frac{{3 - 2}}{4}} \right).3 = 77,75\) (%).

Nhóm 4 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\).

Nhóm 4 có đầu mút trái \(t = 80\), độ dài \(l = 3\), tần số của nhóm \({n_4} = 4\) và nhóm 3 có tần số tích luỹ \(c{f_3} = 1 + 1 + 4 = 6\).

Ta có: \({Q_3} = t + \left( {\frac{{9 - c{f_3}}}{{{n_4}}}} \right).l = 80 + \left( {\frac{{9 - 6}}{4}} \right).3 = 82,25\) (%).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = 82,25 - 77,75 = 4,5\) (%).

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\(\overline x  = \frac{{1.72,5 + 1.75,5 + 4.78,5 + 4.81,5 + 2.84,5}}{{12}} = 79,75\)

Phương sai của mẫu số liệu ghép nhóm đó là:

\(\begin{array}{l}{s^2} = \frac{1}{{12}}\left[ {1.{{\left( {72,5 - 79,75} \right)}^2} + 1.{{\left( {75,5 - 79,75} \right)}^2} + 4.{{\left( {78,5 - 79,75} \right)}^2} + 4.{{\left( {81,5 - 79,75} \right)}^2} + } \right.\\\left. { + 2.{{\left( {84,5 - 79,75} \right)}^2}} \right] = 11,1875\end{array}\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(s = \sqrt {11,1875}  \approx 3,3448\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 16 trang 98 sách bài tập toán 12 - Cánh diều

    Bảng 20 và Bảng 21 lần lượt biểu diễn mẫu số liệu ghép nhóm về nhiệt độ không khí trung bình các tháng năm 2022 tại Bãi Cháy (Quảng Ninh) và Nam Định (đơn vị: độ C). a) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm của Bãi Cháy và Nam Định. b) Trong hai địa điểm Bãi Cháy và Nam Định, địa điểm nào có nhiệt độ không khí trung bình tháng đồng đều hơn?

  • Giải bài 15 trang 97 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho mẫu số liệu ghép nhóm như Bảng 19. a) Khoảng biến thiên của mẫu số liệu ghép nhóm là 2. b) Số trung bình của mẫu số liệu ghép nhóm là 5,32. c) Phương sai của mẫu số liệu ghép nhóm là 5,0176. d) Độ lệch chuẩn của mẫu số liệu ghép nhóm là 2,24.

  • Giải bài 14 trang 97 sách bài tập toán 12 - Cánh diều

    Một mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, thứ hai, thứ ba lần lượt là ({Q_1},{Q_2},{Q_3}). Khoảng tứ phân vị của mẫu số liệu đó bằng: A. ({Q_2} - {Q_1}). B. ({Q_3} - {Q_1}). C. ({Q_3} - {Q_2}). D. ({Q_3} + {Q_1} - {Q_2}).

  • Giải bài 13 trang 97 sách bài tập toán 12 - Cánh diều

    Khi thống kê chiều cao (đơn vị: centimét) của 120 học sinh nữ khối 12 ở một trường trung học phổ thông được kết quả từ 155 cm đến 175 cm. Nếu sử dụng mẫu số liệu ghép nhóm để biểu diễn kết quả này thì khoảng biến thiên của mẫu số liệu là: A. 155. B. 175. C. 20. D. 165.

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí