Giải bài 16 trang 95 sách bài tập toán 12 - Cánh diều>
Một đội tuyển thi bắn súng có 10 xạ thủ, bao gồm 4 xạ thủ hạng I và 6 xạ thủ hạng II. Xác suất bắn trúng mục tiêu của xạ thủ hạng I và hạng II lần lượt là 0,75 và 0,6. Chọn ngẫu nhiên một xạ thủ và xạ thủ đó chỉ bắn 1 viên đạn. Sử dụng sơ đồ hình cây, tính xác suất để viên đạn đó trúng mục tiêu.
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Một đội tuyển thi bắn súng có 10 xạ thủ, bao gồm 4 xạ thủ hạng I và 6 xạ thủ hạng II. Xác suất bắn trúng mục tiêu của xạ thủ hạng I và hạng II lần lượt là 0,75 và 0,6. Chọn ngẫu nhiên một xạ thủ và xạ thủ đó chỉ bắn 1 viên đạn. Sử dụng sơ đồ hình cây, tính xác suất để viên đạn đó trúng mục tiêu.
Phương pháp giải - Xem chi tiết
‒ Sử dụng sơ đồ hình cây.
‒ Sử dụng công thức tính xác suất toàn phần: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết
Xét các biến cố:
\(A\): “Chọn được xạ thủ hạng I”;
\(B\): “Viên đạn đó trúng mục tiêu”;
Có 10 xạ thủ, bao gồm 4 xạ thủ hạng I và 6 xạ thủ hạng II nên ta có
\(P\left( A \right) = \frac{4}{{10}} = 0,4;P\left( {\overline A } \right) = \frac{6}{{10}} = 0,6\)
Xác suất bắn trúng mục tiêu của xạ thủ hạng I và 0,75 nên ta có \(P\left( {B|A} \right) = 0,75\).
Xác suất bắn trúng mục tiêu của xạ thủ hạng II và 0,6 nên ta có \(P\left( {B|\overline A } \right) = 0,6\).
Ta có sơ đồ hình cây như sau:
Vậy xác suất của biến cố \(B\): “Viên đạn đó trúng mục tiêu” là:
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,4.0,75 + 0,6.0,6 = 0,66\).
- Giải bài 15 trang 95 sách bài tập toán 12 - Cánh diều
- Giải bài 14 trang 95 sách bài tập toán 12 - Cánh diều
- Giải bài 13 trang 95 sách bài tập toán 12 - Cánh diều
- Giải bài 12 trang 94 sách bài tập toán 12 - Cánh diều
- Giải bài 11 trang 94 sách bài tập toán 12 - Cánh diều
>> Xem thêm