Giải bài 15 trang 100 sách bài tập toán 9 - Chân trời sáng tạo tập 1


Cho tam giác ABC cân tại A, (widehat A < {90^o}). Vẽ đường tròn đường kính AB cắt BC và AC lần lượt tại D và E. Chứng minh rằng: a) (Delta DBE) là tam giác cân. b) (widehat {CBE} = frac{1}{2}widehat {BAC})

Đề bài

Cho tam giác ABC cân tại A, \(\widehat A < {90^o}\). Vẽ đường tròn đường kính AB cắt BC và AC lần lượt tại D và E. Chứng minh rằng:

a) \(\Delta DBE\) là tam giác cân.

b) \(\widehat {CBE} = \frac{1}{2}\widehat {BAC}\)

Phương pháp giải - Xem chi tiết

Chứng minh DE = DB suy ra \(\Delta DBE\) là tam giác cân.

Hai góc nội tiếp cùng chắn một cung thì bằng nhau.

Lời giải chi tiết

a) Ta có D, E cùng nằm trên đường tròn đường kính AB nên \(\widehat {ADB} = \widehat {AEB} = {90^o}\) hay \(AD \bot BC\)\(BE \bot AC\).

Mà tam giác ABC cân tại A nên D là trung điểm BC nên DE = DB = DC. Vậy tam giác BDE cân tại D.

b) Ta có AD là tia phân giác của \(\widehat {CAB}\), nên \(\widehat {BAD} = \widehat {CAD} = \frac{1}{2}\widehat {CAB}\).

Mặt khác \(\widehat{CBE}=\widehat{DBE}=\widehat{EAD}=\frac{1}{2}sđ\overset\frown{DE}\).

Suy ra \(\widehat {CBE} = \widehat {BAD} = \frac{1}{2}\widehat {BAC}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí