Giải bài 11 trang 96 SGK Toán 8 – Cánh diều>
Cho Hình 107, chứng minh:
Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Cánh diều
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Cho Hình 107, chứng minh:
a) \(\Delta ABN \backsim \Delta AIP\) và \(AI.AN = AP.AB\)
b) \(AI.AN + BI.BM = A{B^2}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Chứng minh hai tam giác đồng dạng theo trường hợp đồng dạng thứ ba.
b) Chứng minh \(\Delta AMB \backsim \Delta IPB\), suy ra tỉ số đồng dạng rồi thay vào biểu thức cần chứng minh.
Lời giải chi tiết
a) Xét tam giác ABN và tam giác AIP có:
\(\widehat {ANB} = \widehat {API} = 90^\circ \) và \(\widehat A\) chung
\( \Rightarrow \)\(\Delta ABN \backsim \Delta AIP\) (g-g)
\( \Rightarrow \frac{{AB}}{{AI}} = \frac{{AN}}{{AP}} \Rightarrow AI.AN = AP.AB\)
b) Xét tam giác AMB và tam giác IPB có:
\(\widehat {AMB} = \widehat {IPB} = 90^\circ \) và \(\widehat B\) chung
\( \Rightarrow \)\(\Delta AMB \backsim \Delta IPB\) (g-g)
\( \Rightarrow \frac{{AB}}{{BI}} = \frac{{BM}}{{BP}} \Rightarrow BI.BM = AP.PB\)
Khi đó:
\(AI.AN + BI.BM = AP.AB + AB.PB = AB\left( {AP + PB} \right) = A{B^2}\)
- Giải bài 12 trang 96 SGK Toán 8 – Cánh diều
- Giải bài 13 trang 96 SGK Toán 8 – Cánh diều
- Giải bài 14 trang 96 SGK Toán 8 – Cánh diều
- Giải bài 10 trang 96 SGK Toán 8 – Cánh diều
- Giải bài 9 trang 95 SGK Toán 8 – Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục