Giải bài 1 trang 110, 111 vở thực hành Toán 9 tập 2


Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng: a) Tứ giác AEHF nội tiếp đường tròn tâm I; b) ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Đề bài

Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng:

a) Tứ giác AEHF nội tiếp đường tròn tâm I;

b) ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Phương pháp giải - Xem chi tiết

a) Chứng minh \(IE = IF = IH = IA\), suy ra tứ giác AEHF nội tiếp đường tròn (I, IA).

b) + Chứng minh tứ giác BCEF nội tiếp đường tròn (M, MB). Nên \(\widehat {AEF} = {180^o} - \widehat {FEC} = \widehat {FBC} = \widehat {ABC}\).

+ Chứng minh \(\widehat {IFA} = \widehat {IAF} = \widehat {HAB} = {90^o} - \widehat {ABC}\), \(\widehat {MFC} = \widehat {FCM}\),

suy ra \(\widehat {MFI} = \widehat {MFC} + \widehat {CFI}\)

\(= \widehat {MFC} + \left( {{{90}^o} - \widehat {IFA}} \right) \\= \left( {{{90}^o} - \widehat {ABC}} \right) + \widehat {ABC} = {90^o}\)

+ Do đó, \(MF \bot IF\) nên MF tiếp xúc với (I, IA).

+ Chứng minh tương tự ta có: ME tiếp xúc với (I, IA).

Lời giải chi tiết

a) Do hai tam giác AEH và AFH vuông tại E và F nên \(IE = IF = IH = IA\). Vì vậy tứ giác AEHF nội tiếp đường tròn (I, IA).

b) Tương tự như trên, tứ giác BCEF có \(\widehat {BFC} = \widehat {BEC} = {90^o}\) nên tứ giác BCEF nội tiếp đường tròn (M, MB).

Suy ra \(\widehat {AEF} = {180^o} - \widehat {FEC} = \widehat {FBC} = \widehat {ABC}\).

Vì \(\Delta IFA\) cân tại I nên \(\widehat {IFA} = \widehat {IAF} = \widehat {HAB} = {90^o} - \widehat {ABC}\). (1)

Mặt khác, ta có \(MF = MC\), hay \(\Delta MFC\) cân tại M. Suy ra \(\widehat {MFC} = \widehat {FCM}\) (2)

Vì vậy ta có:

\(\widehat {MFI} = \widehat {MFC} + \widehat {CFI} \\= \widehat {MFC} + \left( {{{90}^o} - \widehat {IFA}} \right) \\= \left( {{{90}^o} - \widehat {ABC}} \right) + \widehat {ABC} \)

\(= {90^o}\) (theo (1) và (2)).

Do đó, \(MF \bot IF\). Suy ra MF tiếp xúc với (I, IA). Tương tự ME tiếp xúc với (I, IA).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 2 trang 111 vở thực hành Toán 9 tập 2

    Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng các tứ giác ANOP, BPOM, CMON là các tứ giác nội tiếp.

  • Giải bài 3 trang 111 vở thực hành Toán 9 tập 2

    Cho một hình lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng hình vuông có cạnh bằng 3cm. Tính chu vi và diện tích của hình lục giác đều đã cho.

  • Giải bài 4 trang 112 vở thực hành Toán 9 tập 2

    a) Cho hình vuông ABCD nội tiếp đường tròn (O) như hình bên. Phép quay thuận chiều ({45^o}) tâm O biến các điểm A, B, C, D lần lượt thành các điểm A’, B’, C’, D’ như hình bên. Hãy vẽ tứ giác A’B’C’D’. b) Phép quay trong câu a biến các điểm A’, B’, C’, D’ thành những điểm nào?

  • Giải bài 5 trang 112 vở thực hành Toán 9 tập 2

    Bạn Lan muốn cắt hình ngôi sao có dạng như hình dưới đây (trong đó ABCDE là một ngũ giác đều). Lan gấp đôi tờ giấy, vẽ một nửa ngôi sao và cắt theo nét vẽ. Góc tạo bởi lưỡi kéo và nếp gấp lúc đầu bằng bao nhiêu độ?

  • Giải bài 6 trang 113 vở thực hành Toán 9 tập 2

    Cho tam giác nhọn ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC và M là trung điểm của BC. Chứng minh rằng (AH = 2OM).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí