Giá trị của tích phân $\int\limits_0^{2017\pi } {\sqrt {1 - \cos 2x} dx} $ là
-
A.
$0$.
-
B.
$ - 4043\sqrt 2 $.
-
C.
$2\sqrt 2 $.
-
D.
$4034\sqrt 2 $.
Nhận xét tính chất tuần hoàn của hàm số dưới dấu tích phân, từ đó suy ra \(\int\limits_0^T {f\left( x \right)dx} = \int\limits_T^{2T} {f\left( x \right)dx} = ... = \int\limits_{\left( {n - 1} \right)T}^{nT} {f\left( x \right)dx} \)
Do hàm số $f(x) = \sqrt {1 - \cos 2x} = \sqrt 2 \left| {\sin x} \right|$là hàm liên tục và tuần hoàn với chu kì $T = \pi $ nên ta có
\(\begin{array}{l}\int\limits_0^T {f\left( x \right)dx = \int\limits_T^{2T} {f\left( x \right)dx} } = \int\limits_{2T}^{3T} {f\left( x \right)dx} \\ = ... = \int\limits_{\left( {n - 1} \right)T}^{nT} {f\left( x \right)dx} \\ \Rightarrow \int\limits_0^{nT} {f\left( x \right)dx} = \int\limits_0^T {f\left( x \right)dx} \\+ \int\limits_T^{2T} {f\left( x \right)dx}+ \int\limits_{2T}^{3T} {f\left( x \right)dx} + ... + \\ \int\limits_{\left( {n - 1} \right)T}^{nT} {f\left( x \right)dx} = n\int\limits_{0}^{T} {f\left( x \right)dx} \\ \Rightarrow \int\limits_0^{2017\pi } {\sqrt {1 - \cos 2x} dx} \\= 2017\int\limits_0^\pi {\sqrt {1 - \cos 2x} dx} \\ = 2017\sqrt 2 \int\limits_0^\pi {\sin x dx = 4034\sqrt 2 } \end{array}\)
Đáp án : D
Các bài tập cùng chuyên đề
Cho số thực \(a\) thỏa mãn \(\int\limits_{ - 1}^a {{e^{x + 1}}dx} = {e^2} - 1\), khi đó \(a\) có giá trị bằng
Trong các hàm số dưới đây, hàm số nào có tích phân trên đoạn \([0;\pi ]\) đạt giá trị bằng \(0\) ?
Trong các tích phân sau, tích phân nào có giá trị khác \(2\)?
Tích phân \(I = \int\limits_2^5 {\dfrac{{dx}}{x}} \) có giá trị bằng
Tích phân \(I = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\dfrac{{dx}}{{\sin x}}} \) có giá trị bằng
Nếu \(\int\limits_{ - 2}^0 {\left( {4 - {e^{ -{\frac{x}{2}}}}} \right)dx} = K - 2e\) thì giá trị của \(K\) là
Tích phân \(I = \int\limits_0^1 {\dfrac{1}{{{x^2} - x - 2}}dx} \) có giá trị bằng
Tích phân \(\int\limits_0^3 {x(x - 1) dx} \) có giá trị bằng với giá trị của tích phân nào trong các tích phân dưới đây ?
Tích phân \(I = \int\limits_1^2 {{x^5}} dx\) có giá trị là:
Tích phân $I = \int\limits_0^1 {\dfrac{{xdx}}{{{{(x + 1)}^3}}}} $ bằng
Cho hai tích phân $I = \int\limits_0^2 {{x^3}dx} $, $J = \int\limits_0^2 {xdx} $. Tìm mối quan hệ giữa $I$ và $J$
Tích phân $I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{4{{\sin }^3}x}}{{1 + \cos x}}} dx$ có giá trị bằng
Tích phân $I = \int\limits_0^{2\pi } {\sqrt {1 + \sin x} } dx$ có giá trị bằng
Tích phân $\int\limits_{ - 1}^5 {\left| {{x^2} - 2x - 3} \right|} dx$ có giá trị bằng:
Tích phân $\int\limits_2^3 {\dfrac{{{x^2} - x + 4}}{{x + 1}}} dx$ bằng
Giá trị của tích phân $I = \int\limits_0^{\frac{\pi }{2}} {\left( {{{\sin }^4}x + {{\cos }^4}x} \right)\left( {{{\sin }^6}x + {{\cos }^6}x} \right)dx} $ là:
Tìm hai số thực \(A,B\) sao cho $f(x) = A\sin \pi x + B$, biết rằng \(f'(1) = 2\) và \(\int\limits_0^2 {f(x)dx = 4} \).
Giá trị của a để đẳng thức \(\int\limits_1^2 {\left[ {{a^2} + (4 - 4a)x + 4{x^3}} \right]dx} = \int\limits_2^4 {2xdx} \) là đẳng thức đúng
Giá trị của tích phân$I = \int\limits_0^2 {\min \left\{ {1,{x^2}} \right\}dx} $ là
Biết rằng \(\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\cos 2x}}{{{{\left( {\sin x - \cos x + 3} \right)}^2}}}dx = a + \ln b} \) với \(a,b\) là các số hữu tỉ. Giá trị của \(2a + 3b\) bằng