Đề bài

Giả sử \(a;\,\,b;\,\,c\) là các số thực dương. Chọn câu đúng.

  • A.

    $\sqrt {1 + {a^2}}  + \sqrt {1 + {b^2}}  + \sqrt {1 + {c^2}}  \le 2\left( {\sqrt {a + b}  + \sqrt {b + c}  + \sqrt {c + a} } \right)$

  • B.

    $\sqrt {1 + {a^2}}  + \sqrt {1 + {b^2}}  + \sqrt {1 + {c^2}}  \ge 2\left( {\sqrt {a + b}  + \sqrt {b + c}  + \sqrt {c + a} } \right)$

  • C.

    $\sqrt {1 + {a^2}}  + \sqrt {1 + {b^2}}  + \sqrt {1 + {c^2}}  \le \sqrt {a + b}  + \sqrt {b + c}  + \sqrt {c + a} $

  • D.

    $\sqrt {1 + {a^2}}  + \sqrt {1 + {b^2}}  + \sqrt {1 + {c^2}}  \ge \sqrt {a + b}  + \sqrt {b + c}  + \sqrt {c + a} $

Phương pháp giải

Bài toán kết hợp cả hai bất đẳng thức quen thuộc là Cosi và Bunhiacopxki để chứng minh bất đẳng thức.

Nhắc lại kiến thức và phương pháp:

+ Bất đẳng thức Cosi cho hai số thực dương: $a + b \ge 2\sqrt {ab} $.

+ Bất đẳng thức Bunhiacopxki cho hai bộ số $(a;\,\,b);\,\,(c;\,\,d)$ ta có ${\left( {ac + bd} \right)^2} \le \left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)$.

Lời giải của GV Loigiaihay.com

Theo bất đẳng thức Cô si:

$\sqrt {1 + {a^2}}  + \sqrt {1 + {b^2}}  \ge 2\sqrt {\sqrt {1 + {a^2}} \sqrt {1 + {b^2}} }  = 2\sqrt[4]{(1 + {a^2}) (1 + {b^2})}.$

Theo bất đẳng thức Bunhia cốpxki:

\(\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right) = \left( {1 + {a^2}} \right)\left( {{b^2} + 1} \right) \ge {(a + b)^2}\)

$ \Rightarrow \sqrt {1 + {a^2}}  + \sqrt {1 + {b^2}}  \ge 2\sqrt {a + b} $

Tương tự: $\sqrt {1 + {b^2}}  + \sqrt {1 + {c^2}}  \ge 2\sqrt {b + c} $$ \Rightarrow \sqrt {1 + {c^2}}  + \sqrt {1 + {a^2}}  \ge 2\sqrt {c + a} $

Cộng cả ba bất đẳng thức trên rồi chia cho 2 ta có:

\(\sqrt {1 + {a^2}}  + \sqrt {1 + {b^2}}  + \sqrt {1 + {c^2}}  \ge \sqrt {a + b}  + \sqrt {b + c}  + \sqrt {c + a} \)

Dấu “=” xảy ra khi \(a = b = c = 1.\)

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Rút gọn biểu thức  \(P = \dfrac{{2\sqrt 6  + \sqrt 3  + 4\sqrt 2  + 3}}{{\sqrt {11 + 2\left( {\sqrt 6  + \sqrt {12}  + \sqrt {18} } \right)} }}\) ta được

Xem lời giải >>
Bài 2 :

Rút gọn biểu thức \(A = \sqrt x  - \sqrt {x - \sqrt x  + \dfrac{1}{4}} \) khi \(x \ge 0\) ta được:

Xem lời giải >>
Bài 3 :

Cho biểu thức \(B = \sqrt {4x - 2\sqrt {4x - 1} }  + \sqrt {4x + 2\sqrt {4x - 1} } \) (với  \(\dfrac{1}{4} \le x \le \dfrac{1}{2}\)) . Chọn câu đúng.

Xem lời giải >>
Bài 4 :

Cho \(C = \sqrt {9 - \sqrt {5\sqrt 3  + 5\sqrt {8 + 10\sqrt {7 - 4\sqrt 3 } } } } \) và \(B = \sqrt[3]{{1 + \dfrac{{\sqrt {84} }}{9}}} + \sqrt[3]{{1 - \dfrac{{\sqrt {84} }}{9}}}\) . Chọn câu đúng.

Xem lời giải >>
Bài 5 :

Phương trình \(2\left( {1 - x} \right)\sqrt {{x^2} + 2x - 1}  = {x^2} - 2x - 1\) có bao nhiêu nghiệm?

Xem lời giải >>
Bài 6 :

Tính \(x + y\) biết \(\left( {x + \sqrt {{x^2} + 2018} } \right)\left( {y + \sqrt {{y^2} + 2018} } \right) = 2018\).

Xem lời giải >>
Bài 7 :

Giải phương trình \(\sqrt {3x - 2}  - \sqrt {x + 1}  = 2{x^2} + x - 6\) ta được nghiệm duy nhất \({x_0}.\)  Chọn câu đúng.

Xem lời giải >>
Bài 8 :

Cho  \(x + \sqrt 3  = 2.\) Tính giá trị của biểu thức:     \(H = {x^5} - 3{x^4} - 3{x^3} + 6{x^2} - 20x + 2024\).

Xem lời giải >>
Bài 9 :

Cho \(x = \sqrt {4 + \sqrt {10 + 2\sqrt 5 } }  + \sqrt {4 - \sqrt {10 + 2\sqrt 5 } } \). Chọn đáp án đúng về  giá trị biểu thức: \(P = \dfrac{{{x^4} - 4{x^3} + {x^2} + 6x + 12}}{{{x^2} - 2x + 12}}\)

Xem lời giải >>
Bài 10 :

Tính giá trị biểu thức \(P = x\sqrt {\dfrac{{\left( {1 + {y^2}} \right)\left( {1 + {z^2}} \right)}}{{1 + {x^2}}}}  + y\sqrt {\dfrac{{\left( {1 + {z^2}} \right)\left( {1 + {x^2}} \right)}}{{1 + {y^2}}}}  + z\sqrt {\dfrac{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}}{{1 + {z^2}}}} \) với \(x,y,z > 0\) và \(xy + yz + zx = 1\).

Xem lời giải >>
Bài 11 :

Chọn câu đúng.

Xem lời giải >>
Bài 12 :

Với \(x;\,\,y;\,\,z\) là các số thực thỏa mãn \(x + y + z + xy + yz + zx = 6\). Tìm giá trị nhỏ nhất của biểu thức:

\(P = \sqrt {4 + {x^4}}  + \sqrt {4 + {y^4}}  + \sqrt {4 + {z^4}} \).

Xem lời giải >>
Bài 13 :

Tổng các nghiệm của phương trình \(\sqrt {\dfrac{{{x^2}}}{4} + \sqrt {{x^2} - 4} }  = 8 - {x^2}\) là:

Xem lời giải >>
Bài 14 :

Rút gọn biểu thức: \(C = \left( {\dfrac{{\sqrt a  + 1}}{{\sqrt {ab}  + 1}} + \dfrac{{\sqrt {ab}  + \sqrt a }}{{\sqrt {ab}  - 1}} - 1} \right):\left( {\dfrac{{\sqrt a  + 1}}{{\sqrt {ab}  + 1}} - \dfrac{{\sqrt {ab}  + \sqrt a }}{{\sqrt {ab}  - 1}} + 1} \right)\) ta được:

Xem lời giải >>
Bài 15 :

Phương trình $\sqrt {x + 1}  + \sqrt {6x - 14}  = {x^2} - 5$ có bao nhiêu nghiệm?

Xem lời giải >>
Bài 16 :

Cho ba số thực dương: \(a,b,c \le 1\) thỏa mãn: \(a\sqrt {1 - {b^2}}  + b\sqrt {1 - {c^2}}  + c\sqrt {1 - {a^2}}  = \dfrac{3}{2}\). Chọn câu đúng.

Xem lời giải >>