Đề bài

Phương trình $\sqrt {x + 1}  + \sqrt {6x - 14}  = {x^2} - 5$ có bao nhiêu nghiệm?

  • A.

    \(2\)

  • B.

    \(1\)

  • C.

    \(0\)

  • D.

    \(3\)

Phương pháp giải

+ Tìm điều kiện

+ Thêm bớt các hệ số tự do vào vế trái để nhóm thành các nhóm thích hợp. Từ đó  thực hiện phép nhân liên hợp với mỗi nhóm để đưa về dạng phương trình tích.

+ Giải các phương trình thu được bằng phương pháp đánh giá.

+ So sánh điều kiện và kết luận nghiệm.

Lời giải của GV Loigiaihay.com

Điều kiện: $x \ge \dfrac{7}{3}.$

Nhận xét: Với $x \ge \dfrac{7}{3}$ thì \({x^2} - 5 > 0.\)

Ta có: $\sqrt {x + 1}  + \sqrt {6x - 14}  = {x^2} - 5 \Leftrightarrow \sqrt {x + 1}  - 2 + \sqrt {6x - 14}  - 2 = {x^2} - 9.$

$ \Leftrightarrow \dfrac{{x - 3}}{{\sqrt {x + 1}  + 2}} + \dfrac{{6\left( {x - 3} \right)}}{{\sqrt {6x - 14}  + 2}} - \left( {x - 3} \right)\left( {x + 3} \right) = 0.$

$ \Leftrightarrow \left( {x - 3} \right)\left[ {\dfrac{1}{{\sqrt {x + 1}  + 2}} + \dfrac{6}{{\sqrt {6x - 14}  + 2}} - \left( {x + 3} \right)} \right] = 0.$

$ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\\dfrac{1}{{\sqrt {x + 1}  + 2}} + \dfrac{6}{{\sqrt {6x - 14}  + 2}} - \left( {x + 3} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\,\,\left( {TM} \right)\\\dfrac{1}{{\sqrt {x + 1}  + 2}} + \dfrac{6}{{\sqrt {6x - 14}  + 2}} = \left( {x + 3} \right){\rm{    }}\left( * \right)\end{array} \right..$

Ta có: \(\dfrac{1}{{\sqrt {x + 1}  + 2}} < \dfrac{1}{2};\,\dfrac{6}{{\sqrt {6x - 14}  + 2}} < \dfrac{6}{2} \Rightarrow \dfrac{1}{{\sqrt {x + 1}  + 2}} + \dfrac{6}{{\sqrt {6x - 14}  + 2}} < \dfrac{7}{2}\)

Và \(x + 3 \ge \dfrac{7}{3} + 3 \Leftrightarrow x + 3 \ge \dfrac{{16}}{3}\,\,\left( {{\rm{do}}\,x \ge \dfrac{7}{3}} \right)\)

Từ đó: $\left\{ \begin{array}{l}VT\left( * \right) < \dfrac{7}{2}\\VP\left( * \right) \ge \dfrac{{16}}{3}\end{array} \right.{\rm{    }}\left( {\forall x \ge \dfrac{7}{3}} \right) \Rightarrow {\rm{ }}PT\,\left( * \right)$  vô nghiệm.

Vậy phương trình có nghiệm duy nhất \(x = 3.\)

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Rút gọn biểu thức  \(P = \dfrac{{2\sqrt 6  + \sqrt 3  + 4\sqrt 2  + 3}}{{\sqrt {11 + 2\left( {\sqrt 6  + \sqrt {12}  + \sqrt {18} } \right)} }}\) ta được

Xem lời giải >>
Bài 2 :

Rút gọn biểu thức \(A = \sqrt x  - \sqrt {x - \sqrt x  + \dfrac{1}{4}} \) khi \(x \ge 0\) ta được:

Xem lời giải >>
Bài 3 :

Cho biểu thức \(B = \sqrt {4x - 2\sqrt {4x - 1} }  + \sqrt {4x + 2\sqrt {4x - 1} } \) (với  \(\dfrac{1}{4} \le x \le \dfrac{1}{2}\)) . Chọn câu đúng.

Xem lời giải >>
Bài 4 :

Cho \(C = \sqrt {9 - \sqrt {5\sqrt 3  + 5\sqrt {8 + 10\sqrt {7 - 4\sqrt 3 } } } } \) và \(B = \sqrt[3]{{1 + \dfrac{{\sqrt {84} }}{9}}} + \sqrt[3]{{1 - \dfrac{{\sqrt {84} }}{9}}}\) . Chọn câu đúng.

Xem lời giải >>
Bài 5 :

Phương trình \(2\left( {1 - x} \right)\sqrt {{x^2} + 2x - 1}  = {x^2} - 2x - 1\) có bao nhiêu nghiệm?

Xem lời giải >>
Bài 6 :

Tính \(x + y\) biết \(\left( {x + \sqrt {{x^2} + 2018} } \right)\left( {y + \sqrt {{y^2} + 2018} } \right) = 2018\).

Xem lời giải >>
Bài 7 :

Giải phương trình \(\sqrt {3x - 2}  - \sqrt {x + 1}  = 2{x^2} + x - 6\) ta được nghiệm duy nhất \({x_0}.\)  Chọn câu đúng.

Xem lời giải >>
Bài 8 :

Cho  \(x + \sqrt 3  = 2.\) Tính giá trị của biểu thức:     \(H = {x^5} - 3{x^4} - 3{x^3} + 6{x^2} - 20x + 2024\).

Xem lời giải >>
Bài 9 :

Cho \(x = \sqrt {4 + \sqrt {10 + 2\sqrt 5 } }  + \sqrt {4 - \sqrt {10 + 2\sqrt 5 } } \). Chọn đáp án đúng về  giá trị biểu thức: \(P = \dfrac{{{x^4} - 4{x^3} + {x^2} + 6x + 12}}{{{x^2} - 2x + 12}}\)

Xem lời giải >>
Bài 10 :

Tính giá trị biểu thức \(P = x\sqrt {\dfrac{{\left( {1 + {y^2}} \right)\left( {1 + {z^2}} \right)}}{{1 + {x^2}}}}  + y\sqrt {\dfrac{{\left( {1 + {z^2}} \right)\left( {1 + {x^2}} \right)}}{{1 + {y^2}}}}  + z\sqrt {\dfrac{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}}{{1 + {z^2}}}} \) với \(x,y,z > 0\) và \(xy + yz + zx = 1\).

Xem lời giải >>
Bài 11 :

Chọn câu đúng.

Xem lời giải >>
Bài 12 :

Với \(x;\,\,y;\,\,z\) là các số thực thỏa mãn \(x + y + z + xy + yz + zx = 6\). Tìm giá trị nhỏ nhất của biểu thức:

\(P = \sqrt {4 + {x^4}}  + \sqrt {4 + {y^4}}  + \sqrt {4 + {z^4}} \).

Xem lời giải >>
Bài 13 :

Tổng các nghiệm của phương trình \(\sqrt {\dfrac{{{x^2}}}{4} + \sqrt {{x^2} - 4} }  = 8 - {x^2}\) là:

Xem lời giải >>
Bài 14 :

Rút gọn biểu thức: \(C = \left( {\dfrac{{\sqrt a  + 1}}{{\sqrt {ab}  + 1}} + \dfrac{{\sqrt {ab}  + \sqrt a }}{{\sqrt {ab}  - 1}} - 1} \right):\left( {\dfrac{{\sqrt a  + 1}}{{\sqrt {ab}  + 1}} - \dfrac{{\sqrt {ab}  + \sqrt a }}{{\sqrt {ab}  - 1}} + 1} \right)\) ta được:

Xem lời giải >>
Bài 15 :

Giả sử \(a;\,\,b;\,\,c\) là các số thực dương. Chọn câu đúng.

Xem lời giải >>
Bài 16 :

Cho ba số thực dương: \(a,b,c \le 1\) thỏa mãn: \(a\sqrt {1 - {b^2}}  + b\sqrt {1 - {c^2}}  + c\sqrt {1 - {a^2}}  = \dfrac{3}{2}\). Chọn câu đúng.

Xem lời giải >>