Đề bài

Phương trình \(2\left( {1 - x} \right)\sqrt {{x^2} + 2x - 1}  = {x^2} - 2x - 1\) có bao nhiêu nghiệm?

  • A.

    \(3\)

  • B.

    \(3\)

  • C.

    \(1\)

  • D.

    \(2\)

Phương pháp giải

+ Tìm điều kiện.

+ Đặt ẩn phụ và biến đổi để đưa về dạng phương trình tích.

Lời giải của GV Loigiaihay.com

Điều kiện \({x^2} + 2x - 1 \ge 0\). Đặt \(t = \sqrt {{x^2} + 2x - 1}  \ge 0.\)

Phương trình trở thành \(\left( {{x^2} + 2x - 1} \right) + 2\left( {x - 1} \right)\sqrt {{x^2} + 2x - 1} - 4x = 0\)\(\Leftrightarrow {t^2} + 2\left( {x - 1} \right)t - 4x = 0\) \(\Leftrightarrow {t^2} + 2x.t - 2t - 4x = 0\)\( \Leftrightarrow t\left( {t + 2x} \right) - 2\left( {t + 2x} \right) = 0\)

\( \Leftrightarrow \left( {t - 2} \right)\left( {t + 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\\t =  - 2x\end{array} \right.\)

Với \(t = 2,\) ta có \(\sqrt {{x^2} + 2x - 1}  = 2 \)\(\Leftrightarrow {x^2} + 2x - 5 = 0 \)\( \Leftrightarrow {\left( {x + 1} \right)^2} - 6 = 0 \Leftrightarrow {\left( {x + 1} \right)^2} = 6\)\(\Leftrightarrow x =  - 1 \pm \sqrt 6 \) (nhận)

Với \(t =  - 2x,\) ta có \(\sqrt {{x^2} + 2x - 1}  =  - 2x \)\(\Leftrightarrow \left\{ \begin{array}{l}x \le 0\\3{x^2} - 2x + 1 = 0\end{array} \right.\)\(\left\{ \begin{array}{l}
x \le 0\\
3\left( {x - \dfrac{1}{3}} \right)^2 + \dfrac{2}{3} = 0
\end{array} \right.\) vô nghiệm.

Vậy phương trình có nghiệm \(x =  - 1 \pm \sqrt 6 \).

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Rút gọn biểu thức  \(P = \dfrac{{2\sqrt 6  + \sqrt 3  + 4\sqrt 2  + 3}}{{\sqrt {11 + 2\left( {\sqrt 6  + \sqrt {12}  + \sqrt {18} } \right)} }}\) ta được

Xem lời giải >>
Bài 2 :

Rút gọn biểu thức \(A = \sqrt x  - \sqrt {x - \sqrt x  + \dfrac{1}{4}} \) khi \(x \ge 0\) ta được:

Xem lời giải >>
Bài 3 :

Cho biểu thức \(B = \sqrt {4x - 2\sqrt {4x - 1} }  + \sqrt {4x + 2\sqrt {4x - 1} } \) (với  \(\dfrac{1}{4} \le x \le \dfrac{1}{2}\)) . Chọn câu đúng.

Xem lời giải >>
Bài 4 :

Cho \(C = \sqrt {9 - \sqrt {5\sqrt 3  + 5\sqrt {8 + 10\sqrt {7 - 4\sqrt 3 } } } } \) và \(B = \sqrt[3]{{1 + \dfrac{{\sqrt {84} }}{9}}} + \sqrt[3]{{1 - \dfrac{{\sqrt {84} }}{9}}}\) . Chọn câu đúng.

Xem lời giải >>
Bài 5 :

Tính \(x + y\) biết \(\left( {x + \sqrt {{x^2} + 2018} } \right)\left( {y + \sqrt {{y^2} + 2018} } \right) = 2018\).

Xem lời giải >>
Bài 6 :

Giải phương trình \(\sqrt {3x - 2}  - \sqrt {x + 1}  = 2{x^2} + x - 6\) ta được nghiệm duy nhất \({x_0}.\)  Chọn câu đúng.

Xem lời giải >>
Bài 7 :

Cho  \(x + \sqrt 3  = 2.\) Tính giá trị của biểu thức:     \(H = {x^5} - 3{x^4} - 3{x^3} + 6{x^2} - 20x + 2024\).

Xem lời giải >>
Bài 8 :

Cho \(x = \sqrt {4 + \sqrt {10 + 2\sqrt 5 } }  + \sqrt {4 - \sqrt {10 + 2\sqrt 5 } } \). Chọn đáp án đúng về  giá trị biểu thức: \(P = \dfrac{{{x^4} - 4{x^3} + {x^2} + 6x + 12}}{{{x^2} - 2x + 12}}\)

Xem lời giải >>
Bài 9 :

Tính giá trị biểu thức \(P = x\sqrt {\dfrac{{\left( {1 + {y^2}} \right)\left( {1 + {z^2}} \right)}}{{1 + {x^2}}}}  + y\sqrt {\dfrac{{\left( {1 + {z^2}} \right)\left( {1 + {x^2}} \right)}}{{1 + {y^2}}}}  + z\sqrt {\dfrac{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}}{{1 + {z^2}}}} \) với \(x,y,z > 0\) và \(xy + yz + zx = 1\).

Xem lời giải >>
Bài 10 :

Chọn câu đúng.

Xem lời giải >>
Bài 11 :

Với \(x;\,\,y;\,\,z\) là các số thực thỏa mãn \(x + y + z + xy + yz + zx = 6\). Tìm giá trị nhỏ nhất của biểu thức:

\(P = \sqrt {4 + {x^4}}  + \sqrt {4 + {y^4}}  + \sqrt {4 + {z^4}} \).

Xem lời giải >>
Bài 12 :

Tổng các nghiệm của phương trình \(\sqrt {\dfrac{{{x^2}}}{4} + \sqrt {{x^2} - 4} }  = 8 - {x^2}\) là:

Xem lời giải >>
Bài 13 :

Rút gọn biểu thức: \(C = \left( {\dfrac{{\sqrt a  + 1}}{{\sqrt {ab}  + 1}} + \dfrac{{\sqrt {ab}  + \sqrt a }}{{\sqrt {ab}  - 1}} - 1} \right):\left( {\dfrac{{\sqrt a  + 1}}{{\sqrt {ab}  + 1}} - \dfrac{{\sqrt {ab}  + \sqrt a }}{{\sqrt {ab}  - 1}} + 1} \right)\) ta được:

Xem lời giải >>
Bài 14 :

Phương trình $\sqrt {x + 1}  + \sqrt {6x - 14}  = {x^2} - 5$ có bao nhiêu nghiệm?

Xem lời giải >>
Bài 15 :

Giả sử \(a;\,\,b;\,\,c\) là các số thực dương. Chọn câu đúng.

Xem lời giải >>
Bài 16 :

Cho ba số thực dương: \(a,b,c \le 1\) thỏa mãn: \(a\sqrt {1 - {b^2}}  + b\sqrt {1 - {c^2}}  + c\sqrt {1 - {a^2}}  = \dfrac{3}{2}\). Chọn câu đúng.

Xem lời giải >>