Tính \(x + y\) biết \(\left( {x + \sqrt {{x^2} + 2018} } \right)\left( {y + \sqrt {{y^2} + 2018} } \right) = 2018\).
-
A.
\(x + y = 2018\)
-
B.
\(x + y = 2\)
-
C.
\(x + y = 1\)
-
D.
\(x + y = 0\)
+ Sử dụng hằng đẳng thức \(\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\) và giả thiết để chỉ ra \(\sqrt {{x^2} + 2018} - x = \sqrt {{y^2} + 2018} + y\) và \(\sqrt {{y^2} + 2018} - y=\sqrt {{x^2} + 2018} + x\)
+ Từ đó tìm ra giá trị của \(x + y\)
Nhận xét: \(\left( {\sqrt {{x^2} + 2018} + x} \right)\left( {\sqrt {{x^2} + 2018} - x} \right) = {x^2} + 2018 - {x^2} = 2018\) và \(\left( {\sqrt {{y^2} + 2018} + y} \right)\left( {\sqrt {{y^2} + 2018} - y} \right) = {y^2} + 2018 - {y^2} = 2018\)
Kết hợp với giả thiết \(\left( {x + \sqrt {{x^2} + 2018} } \right)\left( {y + \sqrt {{y^2} + 2018} } \right) = 2018\) ta có:
\(\frac{2018}{\sqrt {x^2+2018}-x}.\left( {\sqrt {{y^2} + 2018} + y} \right) = 2018\) suy ra \(\sqrt {{x^2} + 2018} - x = \sqrt {{y^2} + 2018} + y\) và
\(\left( {\sqrt {{x^2} + 2018} + x} \right).\frac{2018}{\sqrt {y^2+2018}-y} = 2018\) suy ra \(\sqrt {{y^2} + 2018} - y=\sqrt {{x^2} + 2018} + x\)
\( \Rightarrow \sqrt {{y^2} + 2018} + y + \sqrt {{x^2} + 2018} + x = \sqrt {{x^2} + 2018} - x + \sqrt {{y^2} + 2018} - y \Leftrightarrow 2\left( {x + y} \right) = 0\)\( \Leftrightarrow x + y = 0.\)
Đáp án : D
Các bài tập cùng chuyên đề
Rút gọn biểu thức \(P = \dfrac{{2\sqrt 6 + \sqrt 3 + 4\sqrt 2 + 3}}{{\sqrt {11 + 2\left( {\sqrt 6 + \sqrt {12} + \sqrt {18} } \right)} }}\) ta được
Rút gọn biểu thức \(A = \sqrt x - \sqrt {x - \sqrt x + \dfrac{1}{4}} \) khi \(x \ge 0\) ta được:
Cho biểu thức \(B = \sqrt {4x - 2\sqrt {4x - 1} } + \sqrt {4x + 2\sqrt {4x - 1} } \) (với \(\dfrac{1}{4} \le x \le \dfrac{1}{2}\)) . Chọn câu đúng.
Cho \(C = \sqrt {9 - \sqrt {5\sqrt 3 + 5\sqrt {8 + 10\sqrt {7 - 4\sqrt 3 } } } } \) và \(B = \sqrt[3]{{1 + \dfrac{{\sqrt {84} }}{9}}} + \sqrt[3]{{1 - \dfrac{{\sqrt {84} }}{9}}}\) . Chọn câu đúng.
Phương trình \(2\left( {1 - x} \right)\sqrt {{x^2} + 2x - 1} = {x^2} - 2x - 1\) có bao nhiêu nghiệm?
Giải phương trình \(\sqrt {3x - 2} - \sqrt {x + 1} = 2{x^2} + x - 6\) ta được nghiệm duy nhất \({x_0}.\) Chọn câu đúng.
Cho \(x + \sqrt 3 = 2.\) Tính giá trị của biểu thức: \(H = {x^5} - 3{x^4} - 3{x^3} + 6{x^2} - 20x + 2024\).
Cho \(x = \sqrt {4 + \sqrt {10 + 2\sqrt 5 } } + \sqrt {4 - \sqrt {10 + 2\sqrt 5 } } \). Chọn đáp án đúng về giá trị biểu thức: \(P = \dfrac{{{x^4} - 4{x^3} + {x^2} + 6x + 12}}{{{x^2} - 2x + 12}}\)
Tính giá trị biểu thức \(P = x\sqrt {\dfrac{{\left( {1 + {y^2}} \right)\left( {1 + {z^2}} \right)}}{{1 + {x^2}}}} + y\sqrt {\dfrac{{\left( {1 + {z^2}} \right)\left( {1 + {x^2}} \right)}}{{1 + {y^2}}}} + z\sqrt {\dfrac{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}}{{1 + {z^2}}}} \) với \(x,y,z > 0\) và \(xy + yz + zx = 1\).
Chọn câu đúng.
Với \(x;\,\,y;\,\,z\) là các số thực thỏa mãn \(x + y + z + xy + yz + zx = 6\). Tìm giá trị nhỏ nhất của biểu thức:
\(P = \sqrt {4 + {x^4}} + \sqrt {4 + {y^4}} + \sqrt {4 + {z^4}} \).
Tổng các nghiệm của phương trình \(\sqrt {\dfrac{{{x^2}}}{4} + \sqrt {{x^2} - 4} } = 8 - {x^2}\) là:
Rút gọn biểu thức: \(C = \left( {\dfrac{{\sqrt a + 1}}{{\sqrt {ab} + 1}} + \dfrac{{\sqrt {ab} + \sqrt a }}{{\sqrt {ab} - 1}} - 1} \right):\left( {\dfrac{{\sqrt a + 1}}{{\sqrt {ab} + 1}} - \dfrac{{\sqrt {ab} + \sqrt a }}{{\sqrt {ab} - 1}} + 1} \right)\) ta được:
Phương trình $\sqrt {x + 1} + \sqrt {6x - 14} = {x^2} - 5$ có bao nhiêu nghiệm?
Giả sử \(a;\,\,b;\,\,c\) là các số thực dương. Chọn câu đúng.
Cho ba số thực dương: \(a,b,c \le 1\) thỏa mãn: \(a\sqrt {1 - {b^2}} + b\sqrt {1 - {c^2}} + c\sqrt {1 - {a^2}} = \dfrac{3}{2}\). Chọn câu đúng.