

Bài 9.16 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
Cho hàm số (fleft( x right) = 2{sin ^2}left( {x + frac{pi }{4}} right).)
Đề bài
Cho hàm số f(x)=2sin2(x+π4).f(x)=2sin2(x+π4). Chứng minh rằng |f″(x)|≤4 với mọi x.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Giả sử hàm số y=f(x) có đạo hàm tại mỗi điểm x∈(a;b). Nếu hàm số y′=f′(x) lại có đạo hàm tại x thì ta gọi đạo hàm của y′ là đạo hàm cấp hai của hàm số y=f(x) tại x, kí hiệu là y″ hoặc f″(x).
Lời giải chi tiết
Ta có f′(x)=2.2sin(x+π4).[sin(x+π4)],=4sin(x+π4)cos(x+π4)=2sin(2x+π2)
⇒f″(x)=2.2cos(2x+π2)=4cos(2x+π2)
Mặt khác −1≤cos(2x+π2)≤1⇔−4≤f″(x)≤4
Vậy |f″(x)|≤4 với mọi x.


- Bài 9.17 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.15 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.14 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.13 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Giải mục 2 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức