Bài 7.18 trang 53 SGK Toán 11 tập 2 - Kết nối tri thức


Cho hình hộp chữ nhật ABCD. A'B'C'D'.

Đề bài

Cho hình hộp chữ nhật ABCD. A'B'C'D'.

a) Chứng minh rằng (BDD′B′) \( \bot \) (ABCD).

b) Xác định hình chiếu của AC′ trên mặt phẳng (ABCD).

c) Cho AB = a, BC = b, CC′ = c. Tính AC′.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Hai mặt phẳng được gọi là vuông góc nếu một đường thẳng nằm trong mặt phẳng này vuông góc với mặt phẳng kia.

Lời giải chi tiết

 

a) Ta có \(BB' \bot \left( {ABCD} \right);BB' \subset \left( {BDD'B'} \right) \Rightarrow \left( {BDD'B'} \right) \bot \left( {ABCD} \right)\)

b) A là hình chiếu của A trên (ABCD)

C là hình chiếu của C’ trên (ABCD) do \(CC' \bot \left( {ABCD} \right)\)

\( \Rightarrow \) AC là hình chiếu của AC’ trên (ABCD)

c) Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = {a^2} + {b^2} \Rightarrow AC = \sqrt {{a^2} + {b^2}} \)

Xét tam giác AC’C vuông tại C có

\(A{C'^2} = C{C'^2} + A{C^2} = {c^2} + {a^2} + {b^2} \Rightarrow A'C = \sqrt {{a^2} + {b^2} + {c^2}} \)


Bình chọn:
3.2 trên 10 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí