Bài 7 trang 27 SGK Hình học 10


Đề bài

Các điểm \(A'(-4; 1), B'(2;4), C'(2, -2)\) lần lượt là trung điểm của các cạnh \(BC, CA\) và \(AB\) của tam giác \(ABC\). Tính tọa độ đỉnh của tam giác \(ABC\). Chứng minh rằng trọng tâm tam giác \(ABC\) và \(A'B'C'\) trùng nhau.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) \(I\) là trung điểm của \(AB\) thì: \(\left\{ \begin{array}{l}
{x_I} = \frac{{{x_A} + {x_B}}}{2}\\
{y_I} = \frac{{{y_A} + {y_B}}}{2}
\end{array} \right..\)

+) \(G\) là trọng tâm tam giác \(ABC\) thì: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right..\)

Lời giải chi tiết

Giả sử \(A({x_A};{y_A}),B({x_B};{y_B}),C({x_C};{y_C})\)

\(A'\) là trung điểm BC \( \Leftrightarrow \left\{ \begin{array}{l}{x_{A'}} = \frac{{{x_B} + {x_C}}}{2}\\{y_{A'}} = \frac{{{y_B} + {y_C}}}{2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - 4 = \frac{{{x_B} + {x_C}}}{2}\\1 = \frac{{{y_B} + {y_C}}}{2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_B} + {x_C} =  - 8\,\left( 1 \right)\\{y_B} + {y_C} = 2\,\left( 2 \right)\end{array} \right.\)

\(B'\) là trung điểm CA \( \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = \frac{{{x_C} + {x_A}}}{2}\\{y_{B'}} = \frac{{{y_C} + {y_A}}}{2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2 = \frac{{{x_C} + {x_A}}}{2}\\4 = \frac{{{y_C} + {y_A}}}{2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_C} + {x_A} = 4\,\left( 3 \right)\\{y_C} + {y_A} = 8\,\left( 4 \right)\end{array} \right.\)

\(C'\) là trung điểm AB \( \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} = \frac{{{x_A} + {x_B}}}{2}\\{y_{C'}} = \frac{{{y_A} + {y_B}}}{2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2 = \frac{{{x_A} + {x_B}}}{2}\\ - 2 = \frac{{{y_A} + {y_B}}}{2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_A} + {x_B} = 4\,\left( 5 \right)\\{y_A} + {y_B} =  - 4\,\left( 6 \right)\end{array} \right.\)

Từ (1), (3) và (5) ta có hệ:

\(\left\{ \begin{array}{l}{x_B} + {x_C} =  - 8\\{x_C} + {x_A} = 4\\{x_A} + {x_B} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} =  - 8 - {x_B}\\ - 8 - {x_B} + {x_A} = 4\\{x_A} + {x_B} = 4\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_C} =  - 8 - {x_B}\\{x_A} - {x_B} = 12\\{x_A} + {x_B} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 8\\{x_B} =  - 4\\{x_C} =  - 4\end{array} \right.\)

Từ (2), (4) và (6) ta có hệ:

\(\left\{ \begin{array}{l}{y_B} + {y_C} = 2\\{y_C} + {y_A} = 8\\{y_A} + {y_B} =  - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_C} = 2 - {y_B}\\2 - {y_B} + {y_A} = 8\\{y_A} + {y_B} =  - 4\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{y_C} = 2 - {y_B}\\{y_A} - {y_B} = 6\\{y_A} + {y_B} =  - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_A} = 1\\{y_B} =  - 5\\{y_C} = 7\end{array} \right.\)

Vậy \(A\left( {8;1} \right),B\left( { - 4; - 5} \right),C\left( { - 4;7} \right)\).

Gọi \(G({x_G};y{}_G)\) là trọng tâm của tam giác \(ABC\)

Khi đó ta có:

\(\left\{ \matrix{
{x_G} = {{{x_A} + {x_B} + {x_C}} \over 3} = {{8 - 4 - 4} \over 3} = 0 \hfill \cr
{y_G} = {{{y_A} + {y_B} + y{}_C} \over 3} = {{1 - 5 + 7} \over 3} = {1} \hfill \cr} \right.\)

Vậy \(G(0;1)\)  (*)

Gọi \(G'({x_{G'}};y{}_{G'})\) là trọng tâm của tam giác \(A'B'C'\)

Khi đó ta có:

\(\left\{ \matrix{
{x_{G'}} = {{{x_{A'}} + {x_{B'}} + {x_{C'}}} \over 3} = {{ - 4 + 2 + 2} \over 3} = 0 \hfill \cr
{y_{G'}} = {{{y_{A'}} + {y_{B'}} + y{}_{C'}} \over 3} = {{1 + 4 - 2} \over 3} = 1 \hfill \cr} \right.\)

Vậy \(G'(0;1)\)  (**)

Từ (*) và (**) ta thấy \(G \equiv G'\)

Vậy trọng tâm tam giác \(ABC\) và \(A'B'C'\) trùng nhau.

Loigiaihay.com


Bình chọn:
4.6 trên 59 phiếu

Các bài liên quan: - Bài 4. Hệ trục tọa độ

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.