Bài 7 trang 155 SGK Đại số 10


Biến đổi thành tích các biểu thức sau

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Biến đổi thành tích các biểu thức sau

a) \(1 - \sin x\);                    b) \(1 + \sin x\);

c) \(1 + 2\cos x\);                  d) \(1 - 2\sin x\)

LG a

\(1 - \sin x\);

Phương pháp giải:

Áp dụng các công thức: 

\(\begin{array}{l}
+ )\;\;\sin a + \sin b = 2\sin \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}.\\
+ )\;\;\sin a - \sin b = 2\cos \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}.\\
+ )\;\;\cos a + \cos b = 2\cos \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}.\\
+ )\;\;\cos a - \cos b = - 2\sin \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}.
\end{array}\)

Lời giải chi tiết:

\(1 - \sin x = \sin \dfrac{\pi }{2} - \sin x \)

\(= 2\cos \dfrac{\dfrac{\pi }{2}+x}{2}\sin \dfrac{\dfrac{\pi}{2}-x}{2}\)

\(= 2 \cos \left ( \dfrac{\pi }{4} +\dfrac{x}{2}\right )\sin\left ( \dfrac{\pi }{4} -\dfrac{x}{2}\right )\)

Cách khác:

\(\begin{array}{l}
1 - \sin x\\
= {\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\\
= {\left( {\sin \dfrac{x}{2} - \cos \dfrac{x}{2}} \right)^2}
\end{array}\)

Quảng cáo
decumar

LG b

\(1 + \sin x\);

Lời giải chi tiết:

\(1 + \sin x = \sin \dfrac{\pi }{2} + \sin x \) \(= 2\sin \dfrac{\dfrac{\pi }{2}+x}{2}\cos \dfrac{\dfrac{\pi}{2}-x}{2}\)

\(= 2\sin \left ( \dfrac{\pi }{4} +\dfrac{x}{2}\right )\cos \left ( \dfrac{\pi }{4} -\dfrac{x}{2}\right )\)

Cách khác:

\(\begin{array}{l}
1 + \sin x\\
= {\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\\
= {\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)^2}
\end{array}\)

LG c

\(1 + 2\cos x\);

Lời giải chi tiết:

\(1 + 2\cos x = 2( \dfrac{1}{2} + \cos x) \)

\(= 2(\cos \dfrac{\pi}{3} + \cos x) \)

\(= 4\cos \left ( \dfrac{\pi }{6} +\dfrac{x}{2}\right )\cos \left ( \dfrac{\pi }{6} -\dfrac{x}{2}\right )\)

Cách khác:

\(\begin{array}{l}
1 + 2\cos x = 1 + 2\left( {2{{\cos }^2}\dfrac{x}{2} - 1} \right)\\
= 4{\cos ^2}\dfrac{x}{2} - 1 = {\left( {2\cos \dfrac{x}{2}} \right)^2} - 1\\
= \left( {2\cos \dfrac{x}{2} - 1} \right)\left( {2\cos \dfrac{x}{2} + 1} \right)
\end{array}\)

LG d

\(1 - 2\sin x\)

Lời giải chi tiết:

\(1 - 2\sin x = 2( \dfrac{1}{2} - \sin x) \)

\(= 2(\sin \dfrac{\pi}{6} - \sin x)\)

\(= 4\cos \left ( \dfrac{\pi }{12} +\dfrac{x}{2}\right )\sin \left ( \dfrac{\pi }{12} -\dfrac{x}{2}\right )\)

Loigiaihay.com


Bình chọn:
4.5 trên 41 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

2k8 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập miễn phí

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.