Bài 6 trang 84 SGK Hình học 10

Bình chọn:
4.3 trên 34 phiếu

Giải bài 6 trang 84 SGK Hình học 10. Cho đường tròn (C) có phương trình:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho đường tròn \((C)\) có phương trình:

 \({x^2} + {\rm{ }}{y^2} - {\rm{ }}4x{\rm{ }} + {\rm{ }}8y{\rm{ }} - {\rm{ }}5{\rm{ }} = {\rm{ }}0\)

LG a

Tìm tọa độ tâm và bán kính của \((C).\)

Phương pháp giải:

+) Đường tròn \((C): \, {x^2} + {y^2} - 2ax - 2by + c = 0\) có tâm \(I(a; \, b)\) và bán kính \(R=\sqrt{a^2+b^2-c}.\)

+) Xét xem điểm A có thuộc đường tròn (C) hay không. Nếu A thuộc (C) thì tiếp tuyến tại A của (C) nhận vecto IA làm VTPT. Từ đó lập phương trình đường thẳng đi qua A và nhận vecto IA làm VTVPT.

+) Gọi phương trình tiếp tuyến cần lập có dạng: \(d: \, 4x+3y+c=0.\) Khi đó ta có: \(R = d\left( {I;\;d} \right).\) Từ đó ta tìm được ẩn \(c\) hay lập được phương trình đề bài yêu cầu.

Giải chi tiết:

\({x^2} + {\rm{ }}{y^2} - {\rm{ }}4x{\rm{ }} + {\rm{ }}8y{\rm{ }} - {\rm{ }}5{\rm{ }} = {\rm{ }}0\)

\( \Leftrightarrow {x^2} - 2.x.2 + {2^2} + {y^2} + 2.y.4 + {4^2}\)\( = 25 \)

\(\Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y + 4} \right)^2} = {5^2}\)

 Tâm \(I(2 ; -4)\), bán kính \(R = 5\)

LG b

Viết phương trình tiếp tuyến với \((C)\) đi qua điểm \(A(-1; 0).\)

Phương pháp giải:

+) Đường tròn \((C): \, {x^2} + {y^2} - 2ax - 2by + c = 0\) có tâm \(I(a; \, b)\) và bán kính \(R=\sqrt{a^2+b^2-c}.\)

+) Xét xem điểm A có thuộc đường tròn (C) hay không. Nếu A thuộc (C) thì tiếp tuyến tại A của (C) nhận vecto IA làm VTPT. Từ đó lập phương trình đường thẳng đi qua A và nhận vecto IA làm VTVPT.

+) Gọi phương trình tiếp tuyến cần lập có dạng: \(d: \, 4x+3y+c=0.\) Khi đó ta có: \(R = d\left( {I;\;d} \right).\) Từ đó ta tìm được ẩn \(c\) hay lập được phương trình đề bài yêu cầu.

Giải chi tiết:

Thay tọa độ \(A(-1 ; 0)\) vào vế trái, ta có :

\((-1- 2 )^2 + (0 + 4)^2 = 3^2+4^2= 25\)

Vậy \(A(-1 ;0)\) là điểm thuộc đường tròn.

\(\overrightarrow {IA} ( - 3;4)\)

Phương trình tiếp tuyến với đường tròn tại \(A\) là:

\(-3(x +1) +4(y -0) =0 \)\(  \Leftrightarrow   3x - 4y + 3 = 0\)

LG c

Viết phương trình tiếp tuyến với \((C)\) vuông góc với đường thẳng  \(3x – 4y + 5 = 0.\)

Phương pháp giải:

+) Đường tròn \((C): \, {x^2} + {y^2} - 2ax - 2by + c = 0\) có tâm \(I(a; \, b)\) và bán kính \(R=\sqrt{a^2+b^2-c}.\)

+) Xét xem điểm A có thuộc đường tròn (C) hay không. Nếu A thuộc (C) thì tiếp tuyến tại A của (C) nhận vecto IA làm VTPT. Từ đó lập phương trình đường thẳng đi qua A và nhận vecto IA làm VTVPT.

+) Gọi phương trình tiếp tuyến cần lập có dạng: \(d: \, 4x+3y+c=0.\) Khi đó ta có: \(R = d\left( {I;\;d} \right).\) Từ đó ta tìm được ẩn \(c\) hay lập được phương trình đề bài yêu cầu.

Giải chi tiết:

Đường thẳng  \(3x – 4y + 5 = 0\) có véc tơ pháp tuyến \(\overrightarrow n(3;-4)\)

Theo giả thiết tiếp tuyến vuông góc với đường thẳng  \(3x – 4y + 5 = 0\) nên tiếp tuyến có véc tơ pháp tuyến là \(\overrightarrow {n'}(4;3)\) 

Phương trình tiếp tuyến có dạng là: \(4x+3y+c=0\)

Khoảng cách từ tâm \(I\) đến tiếp tuyến bằng bán kính \(R=5\) do đó ta có:

\({{|4.2 + 3.( - 4) + c|} \over {\sqrt {{4^2} + {3^2}} }} = 5 \Leftrightarrow |c - 4| = 25\)

\(\Leftrightarrow \left[ \matrix{
c - 4 = 25 \hfill \cr 
c - 4 = - 25 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
c = 29 \hfill \cr 
c = - 21 \hfill \cr} \right.\)

Vậy có hai phương trình tiếp tuyến thỏa mãn yêu cầu bài toán là:

\(4x+3y+29=0\) và \(4x+3y-21=0\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

Các bài liên quan: - Bài 2. Phương trình đường tròn

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng