Bài 3 trang 84 SGK Hình học 10


Lập phương trình đường tròn đi qua ba điểm

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Lập phương trình đường tròn đi qua ba điểm:

LG a

\(A(1; 2); B(5; 2); C(1; -3)\)

Phương pháp giải:

Gọi phương trình đường tròn có dạng:  \(x^2+y^2-2 ax – 2by +c = 0\) 

Khi đó thay tọa độ 3 điểm đề bài cho vào phương trình đường tròn ta được hệ phương trình 3 ẩn. Giải hệ phương trình này ta tìm được \(a, \, \, b, \, \, c\) hay tìm được phương trình đường tròn cần lập.

Lời giải chi tiết:

Gọi phương trình đường tròn có dạng: \((C):x^2+y^2-2 ax – 2by +c = 0\)

\(A(1; 2)\in (C)\) nên:

\(1^2+ 2^2– 2a -4b + c = 0\)\(\Leftrightarrow   2a + 4b – c = 5\)

\(B(5; 2)\in (C)\) nên:

\(5^2+ 2^2– 10a -4b + c = 0 \)\(\Leftrightarrow    10a + 4b – c = 29\)

\(C(1; -3)\in (C)\) nên:

\(1^2+ (-3)^2 – 2a + 6b + c = 0   \)\(\Leftrightarrow     2a - 6b – c = 10\)

Ta có hệ: \(\left\{\begin{matrix} 2a + 4b- c = 5 (1) & & \\ 10a +4b - c= 29 (2) & & \\ 2a- 6b -c =10 (3) & & \end{matrix}\right.\)

Giải hệ ta được:  \(\left\{ \matrix{
a = 3 \hfill \cr 
b = - 0,5 \hfill \cr 
c = - 1 \hfill \cr} \right.\)

Phương trình đường tròn cần tìm là: \({{x^2} + {\rm{ }}{y^2} - {\rm{ }}6x{\rm{ }} + {\rm{ }}y{\rm{ }} - {\rm{ }}1{\rm{ }} = {\rm{ }}0} \)

LG b

\(M(-2; 4); N(5; 5); P(6; -2)\)

Lời giải chi tiết:

\(M(-2; 4)\in (C)\) nên:

\((-2)^2+ 4^2+4a -8b + c = 0 \)\(  \Leftrightarrow   4a - 8b + c = -20\)

\(N(5; 5)\in (C)\) nên:

\(5^2+ 5^2– 10a -10b + c = 0\)\( \Leftrightarrow    10a +10b – c = 50\)

\(P(6; -2)\in (C)\) nên:

\(6^2+ (-2)^2 – 12a + 4b + c = 0   \)\(\Leftrightarrow     12a - 4b – c = 40\)

Ta có hệ phương trình: 

$$\left\{ \matrix{
4a - 8b + c = - 20 \hfill \cr 
10a + 10b - c = 50 \hfill \cr 
12a - 4b - c = 40 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = 2 \hfill \cr 
b = 1 \hfill \cr 
c = - 20 \hfill \cr} \right.$$

Phương trình đường tròn đi qua ba điểm \(M(-2; 4); N(5; 5); P(6; -2)\) là:

\(x^2+ y^2- 4x – 2y - 20 = 0\) 

Loigiaihay.com


Bình chọn:
4.4 trên 47 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.