Bài 5 trang 84 SGK Hình học 10


Giải bài 5 trang 84 SGK Hình học 10. Lập phương trình của đường tròn tiếp xúc với các trục tọa độ ...

Đề bài

Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng \(d : 4x – 2y – 8 = 0.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Gọi tọa độ tâm \(I\) của đường tròn dựa vào đường thẳng \(d.\)

+) Đường tròn tiếp xúc với các trục tọa độ nên: \(R = d\left( {I;\;Ox} \right) = d\left( {I;\;Oy} \right) \)\(\Leftrightarrow R = \left| {{x_I}} \right| = \left| {{y_I}} \right|.\)

Lời giải chi tiết

Gọi đường tròn cần tìm là (C) có tâm \(I(a ; b)\) và bán kính bằng R.

(C) tiếp xúc với Ox ⇒ R = d(I ; Ox) = |b|

(C) tiếp xúc với Oy ⇒ R = d(I ; Oy) = |a|

⇒ |a| = |b|

⇒ a = b hoặc a = –b.

+) TH1: \(I(a; \, a)\):

\(I\in d \Leftrightarrow 4a – 2a – 8 = 0 \Rightarrow a = 4\)

Đường tròn cần tìm có tâm \(I(4; 4)\) và bán kính \(R = 4\) có phương trình là:

 \({(x - 4)^2} + {(y - 4)^2} = {4^2} \)\(\Leftrightarrow {(x - 4)^2} + {(y - 4)^2} = 16\)

+) TH2: \(I(a; -a)\)

\(I\in d \Leftrightarrow 4a + 2a - 8 = 0  \Rightarrow a = \dfrac{4}{3}\)

Ta được đường tròn có phương trình là:

\((x -\dfrac{4}{3})^{2}+ (y +\dfrac{4}{3})^{2}= (\dfrac{4}{3})^{2}\)

\( \Leftrightarrow {\left( {x - {4 \over 3}} \right)^2} + {\left( {y + {4 \over 3}} \right)^2} = {{16} \over 9}\)

Vậy có hai đường tròn thỏa mãn đề bài.

Loigiaihay.com


Bình chọn:
4.3 trên 36 phiếu

Các bài liên quan: - Bài 2. Phương trình đường tròn

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài