Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng \(d : 4x – 2y – 8 = 0.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+) Gọi tọa độ tâm \(I\) của đường tròn dựa vào đường thẳng \(d.\)
+) Đường tròn tiếp xúc với các trục tọa độ nên: \(R = d\left( {I;\;Ox} \right) = d\left( {I;\;Oy} \right) \)\(\Leftrightarrow R = \left| {{x_I}} \right| = \left| {{y_I}} \right|.\)
Lời giải chi tiết
Vì đường tròn cần tìm tiếp xúc với hai trục tọa độ nên các tọa độ \(x_I; \,y_I\) của tâm \(I\) có thể là \(x_I=y_I\) hoặc \(x_I=-y_I\)
Đặt \(x_I=a\) thì ta có hai trường hợp \(I(a ; a)\) hoặc \(I(a ; -a)\). Ta có hai khả năng:
+) TH1: \(I(a; \, a)\):
Vì \(I\) nằm trên đường thẳng \(4x – 2y – 8 = 0\) nên tọa độ \(I(a ; a)\) là nghiệm đúng của phương trình đường thẳng \(4x – 2y – 8 = 0\), ta có:
\(4a – 2a – 8 = 0 \Rightarrow a = 4\)
Đường tròn cần tìm có tâm \(I(4; 4)\) và bán kính \(R = 4\) có phương trình là: