Bài 5 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo>
Tại các giá trị nào của x thì đồ thị hàm số y = cosx và y = sinx giao nhau?
Đề bài
Tại các giá trị nào của x thì đồ thị hàm số y = cosx và y = sinx giao nhau?
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(\sin x = cos\left( {\frac{\pi }{2} - x} \right)\) và giải phương trình côsin
Lời giải chi tiết
Đồ thị hàm số y = cosx và y = sinx giao nhau tại điểm x thoả mãn
\(cosx = sinx \Leftrightarrow cosx = cos\left( {\frac{\pi }{2} - x} \right)\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} - x + k2\pi \\x = - \frac{\pi }{2} + x + k2\pi \end{array} \right. \Leftrightarrow x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}.\)
Vậy \(x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}.\)
- Bài 6 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 7 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 4 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 3 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 2 trang 40 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo