Bài 4.17 trang 114 SGK Toán 11 tập 1 - Cùng khám phá


Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy lớn là AD, AD = 2BC. Gọi I, K, L lần lượt là trung điểm của đoạn AD, SA, SD. Chứng minh rằng (SAB) // (ILC) và (SCD) // (BIK).

Đề bài

Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy lớn là AD, AD = 2BC. Gọi I, K, L lần lượt là trung điểm của đoạn AD, SA, SD. Chứng minh rằng (SAB) // (ILC) và (SCD) // (BIK).

Phương pháp giải - Xem chi tiết

Nếu mặt phẳng (P) chứa 2 đường thẳng cắt nhau a, b và a, b cùng song song với mặt phẳng (Q) thì (P) song song với (Q).

Lời giải chi tiết

Xét tam giác SAD có I, L lần lượt là trung điểm của AD, SD nên IL // SA. Suy ra IL // (SAB) (1)

AD = 2BC mà I là trung điểm AD nên AI = BC, AI // BC (do ABCD là hình thang). Suy ra AICB là hình bình hành

\( \Rightarrow \)IC // AB \( \Rightarrow \)IC // (SAB) (2)

Từ (1) và (2) suy ra  (ILC) // (SAB)

Xét tam giác SAD có I, K lần lượt là trung điểm của AD, SA nên IK // SD. Suy ra IK // (SCD) (3)

AD = 2BC mà I là trung điểm AD nên ID = BC, ID // BC (do ABCD là hình thang). Suy ra BIDC là hình bình hành

\( \Rightarrow \)BI // CD \( \Rightarrow \)BI // (SCD) (4)

Từ (3) và (4) nên (BIK) // (SCD).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí