Bài 2 trang 49 SGK Đại số 10

Bình chọn:
4.7 trên 80 phiếu

Giải bài 2 trang 49 SGK Đại số 10. Lập bảng biến thiên và vẽ đồ thị của các hàm số.

Đề bài

Lập bảng biến thiên và vẽ đồ thị của các hàm số.

a) \(y = 3x^2- 4x + 1\);            

b) \(y = - 3x^2+ 2x – 1\);

c) \(y = 4x^2- 4x + 1\);            

d) \(y = - x^2+ 4x – 4\);

e) \(y = 2x^2+ x + 1\);              

f) \(y = - x^2+ x - 1\).

Phương pháp giải - Xem chi tiết

Dựa vào đồ thị của hàm số \(y= a x^2 + bx + c\) ( a khác 0), ta có bảng biến thiên của nó trong hai trường hợp a > 0 và a < 0 như sau:

Cách vẽ:

Bước 1: Xác định tọa độ của đỉnh \(I\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

Bước 2: Vẽ trục đối xứng \(x =  - \frac{b}{{2a}}\)

Bước 3: Xác định tọa độ các giao điểm của parabol với trục tung, trục hoành ( nếu có)

Xác định thêm một số điểm thuộc đồ thị để vẽ đồ thị chính xác hơn.

4) Vẽ parabol

Khi vẽ parabol cần lưu ý đến dấu của hệ số a (a > 0 thì bề lõm quay lên trên); (a > 0 thì bề lõm quay xuống dưới).

Lời giải chi tiết

a) \(y = 3x^2- 4x + 1\)

Bảng biến thiên: 

Đồ thị:

- Đỉnh: \(I\left( {{2 \over 3}; - {1 \over 3}} \right)\)

- Trục đối xứng: \(x = {2 \over 3}\)

- Giao điểm với trục tung \(A(0; 1)\)

- Giao điểm với trục hoành \(B\left( {{1 \over 3};0} \right)\), \(C(1; 0)\).

b) \(y = - 3x^2+ 2x – 1\)

Bảng biến thiên:

Vẽ đồ thị:

- Đỉnh \(I\left( {{1 \over 3}; - {2 \over 3}} \right)\), trục đối xứng: \(x = {1 \over 3}\)

- Giao điểm với trục tung \(A(0;- 1)\).

- Giao điểm với trục hoành: không có.

Ta xác định thêm điểm phụ: \(B(1;- 2)\), \(C(1;- 6)\).

c) \(y = 4x^2- 4x + 1\).

Lập bảng biến thiên và vẽ tương tự câu a, b.

d) \(y = - x^2+ 4x – 4=- (x – 2)^2\)

Bảng biến thiên:

Cách vẽ đồ thị:

Ngoài cách vẽ như câu a, b, ta có thể vẽ như sau:

+ Vẽ đồ thị \((P)\) của hàm số \(y = - x^2\).

+ Tịnh tiến \((P)\) song song với \(Ox\) sang phải \(2\) đơn vị được \((P1)\) là đồ thị cần vẽ. (hình dưới).

e)  \(y = 2x^2+ x + 1\);   

-          Đỉnh  \(I\left( {{{ - 1} \over 4};{{ - 7} \over 8}} \right)\)

-          Trục đối xứng :  \(x = {{ - 1} \over 4}\)

-          Giao \(Ox\): Đồ thị không giao với trục hoành

-          Giao \(Oy\): Giao với trục tung tại điểm \((0;1)\)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x

-2

-1

0

1

2

y

7

2

1

4

11

f) \(y = - x^2+ x - 1\).

-          Đỉnh  \(I\left( {{1 \over 2};{{ - 3} \over 4}} \right)\)

-          Trục đối xứng :  \(x = {1 \over 2}\)

-          Giao Ox: Đồ thị không giao với trục hoành

-          Giao Oy: Giao với trục tung tại điểm \((0;-1)\)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x

-2

-1

0

1

2

y

-7

-3

-1

-1

-3

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 10 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan