Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cùng khám phá>
I. Giới hạn của hàm số tại một điểm
I. Giới hạn của hàm số tại một điểm
1. Giới hạn hữu hạn của hàm số tại một điểm
Cho điểm \({x_0}\) thuộc khoảng K và hàm số \(y = f(x)\) xác định trên K hoặc trên \(K\backslash \left\{ {{x_0}} \right\}\). Ta nói hàm số \(y = f(x)\) có giới hạn hữu hạn là số L khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to L\)
Kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) hay \(f(x) \to L\), khi \({x_n} \to {x_0}\).
2. Định lí về giới hạn hữu hạn của hàm số
a, Cho \(y = f(x)\) và \(y = g(x)\) là các hàm số xác định trên \(K\backslash \left\{ {{x_0}} \right\}\)
Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g(x) = M\), trong đó M, L là các số thực thì:
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = L \pm M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x).g(x)} \right] = L.M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{L}{M}\left( {M \ne 0} \right)\)
b, Nếu \(f(x) \ge 0\)với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f(x)} = \sqrt L \).
3. Giới hạn vô cực
Cho điểm \({x_0}\)thuộc khoảng K và hàm số \(y = f(x)\) xác định trên K hoặc \(K\backslash \left\{ {{x_0}} \right\}\). Ta nói hàm số \(f(x)\) có giới hạn là \( + \infty \)(hoặc \( - \infty \) ) khi \(x\) dần tới \({x_0}\) nếu với mọi dãy số \(\left( {{x_n}} \right)\), \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) mà \(\lim {x_n} = {x_0}\), ta đều có \(\lim f\left( {{x_n}} \right) = + \infty \) (hoặc \(\lim f\left( {{x_n}} \right) = - \infty \) kí hiệu kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = + \infty \) hoặc \(f(x) \to + \infty \) khi \(x \to {x_0}\) (tương tự kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = - \infty \) hoặc \(f(x) \to - \infty \) khi \(x \to {x_0}\) ).
II. Giới hạn một phía
Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {{x_0};b} \right)\).
Ta nói \(y = f(x)\) có giới hạn bên phải là số L khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì,\({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\).
Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a;{x_0}} \right)\).
Ta nói \(y = f(x)\) có giới hạn bên phải là số L khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì,\(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = L\).
*Định lí:
\(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = \mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\)
III. Giới hạn của hàm số tại vô cực
1. Giới hạn hữu hạn của hàm số tại vô cực
Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} > a\) và \({x_n} \to + \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to + \infty \).
Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( { - \infty ;a} \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} < a\) và \({x_n} \to - \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to - \infty \).
* Nhận xét:
- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
- Với c là hằng số, k là một số nguyên dương ta có:
\(\mathop {\lim }\limits_{x \to \pm \infty } c = c,\)\(\mathop {\lim }\limits_{x \to \pm \infty } (\frac{c}{{{x^k}}}) = 0\)
2. Giới hạn vô cực của hàm số tại vô cực
a, Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a; + \infty } \right)\).
Ta nói hàm số \(f(x)\) có giới hạn là \( + \infty \) khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right),{x_n} > a\)và \(\lim {x_n} = + \infty \), ta đều có \(\lim f\left( {{x_n}} \right) = + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \) hoặc \(f(x) \to + \infty \) khi \(x \to + \infty \) .
b, Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( { - \infty ;a} \right)\).
Ta nói hàm số \(f(x)\)có giới hạn là \( + \infty \) khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right),{x_n} < a\)và \(\lim {x_n} = - \infty \), ta đều có \(\lim f\left( {{x_n}} \right) = + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = + \infty \) hoặc \(f(x) \to + \infty \) khi \(x \to - \infty \)
Từ hai định nghĩa trên, ta có định nghĩa \(f(x) \to - \infty \) khi \(x \to + \infty \) (hay \(x \to - \infty \)) như sau:
c, \(\mathop {\lim }\limits_{x \to + \infty } f(x) = - \infty \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left[ { - f(x)} \right] = + \infty \)
d, \(\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \Leftrightarrow \mathop {\lim }\limits_{x \to - \infty } \left[ { - f(x)} \right] = + \infty \)
* Chú ý:
- \(\mathop {\lim }\limits_{x \to + \infty } {x^k} = + \infty ,k \in {\mathbb{Z}^ + }.\)
- \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = + \infty ,\) k là số nguyên dương chẵn.
- \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = - \infty ,\) k là số nguyên dương lẻ.
3. Quy tắc tìm giới hạn của tích và thương tại vô cực
*Giới hạn của tích\(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x).g(x)} \right]\)
*Giới hạn của thương \(\frac{{f(x)}}{{g(x)}}\)
Các quy tắc trên vẫn đúng khi thay \( + \infty \) thành \( - \infty \) (\({x_0}^ - \)hoặc \({x_0}^ + \))
- Giải mục 3 trang 69, 70, 71, 72, 73 SGK Toán 11 tập 1 - Cùng khám phá
- Giải mục 2 trang 67, 68, 69 SGK Toán 11 tập 1 - Cùng khám phá
- Giải mục 1 trang 65, 66, 67 SGK Toán 11 tập 1 - Cùng khám phá
- Bài 3.6 trang 73 SGK Toán 11 tập 1 - Cùng khám phá
- Bài 3.7 trang 74 SGK Toán 11 tập 1 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Công thức nhân xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức cộng xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Thể tích khối lăng trụ, khối chóp và khối chóp cụt đều - SGK Toán 11 Cùng khám phá
- Lý thuyết Khoảng cách - SGK Toán 11 Cùng khám phá
- Lý thuyết Hai mặt phẳng vuông góc - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức nhân xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Công thức cộng xác suất - SGK Toán 11 Cùng khám phá
- Lý thuyết Thể tích khối lăng trụ, khối chóp và khối chóp cụt đều - SGK Toán 11 Cùng khám phá
- Lý thuyết Khoảng cách - SGK Toán 11 Cùng khám phá
- Lý thuyết Hai mặt phẳng vuông góc - SGK Toán 11 Cùng khám phá