Bài 3.8 trang 74 SGK Toán 11 tập 1 - Cùng khám phá


Tìm các giới hạn sau:

Đề bài

Tìm các giới hạn sau:

a, \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + x + 1}}{{x + 2}}\)

b, \(\mathop {\lim }\limits_{x \to 4} \frac{{3 - x}}{{{{(x - 4)}^2}}}\)

c, \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2}}}{{2x - 4}}\)

Phương pháp giải - Xem chi tiết

a, Chia tử cho mẫu để tính giới hạn hàm số

b, Tính giới hạn tử và giới hạn mẫu để xác định giới hạn hàm số

c, Tính giới hạn tử và giới hạn mẫu để xác định giới hạn hàm số.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a, Ta có: \(f(x) = \frac{{{x^2} + x + 1}}{{x + 2}} = x - 1 + \frac{3}{{x + 2}}\)

Vậy \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + x + 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to  + \infty } (x - 1 + \frac{3}{{x + 2}}) =  + \infty \).

b, Ta có: \(\mathop {\lim }\limits_{x \to 4} (3 - x) =  - 1\)

               \(\mathop {\lim }\limits_{x \to 4} {(x - 4)^2} = 0\) và \({(x - 4)^2} > 0\)

Vậy \(\mathop {\lim }\limits_{x \to 4} \frac{{3 - x}}{{{{(x - 4)}^2}}} =  - \infty \).

c, Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} {x^2} = 4\)

               \(\mathop {\lim }\limits_{x \to {2^ + }} (2x - 4) = 0\) và 2x – 4>0

\(\)Vậy \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2}}}{{2x - 4}} =  + \infty \).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí