 Giải toán 7, giải bài tập toán lớp 7 sgk đầy đủ đại số và hình học
                                                
                            Giải toán 7, giải bài tập toán lớp 7 sgk đầy đủ đại số và hình học
                         Bài 4. Giá trị tuyệt đối của một số hữu tỉ. Cộng, trừ, ..
                                                        Bài 4. Giá trị tuyệt đối của một số hữu tỉ. Cộng, trừ, ..
                                                    Lý thuyết giá trị tuyệt đối của một số hữu tỉ cộng, trừ, nhân, chia số thập phân>
Để cộng, trừ, nhân, chia các số thập phân ta viết chúng dưới dạng phân số thập phân rồi làm theo quy tắc các phép tính đã biết về phân số
1. Giá trị tuyệt đối của một số hữu tỉ
Giá trị tuyệt đối của một số hữu tỉ \(x\), kí hiệu là \(|x|\), là khoảng cách từ điểm \(x\) tới điểm \(0\) trên trục số.
Ta xác định như sau:
\(\left | x \right |=\left\{\begin{matrix} x& \text{nếu} & x \geq 0 \\ -x& \text{nếu} & x < 0 \end{matrix}\right.\)
Ví dụ: \(\left| {\dfrac{2}{5}} \right| = \dfrac{2}{5};\)\(\left| { - \dfrac{5}{4}} \right| = \dfrac{5}{4}\)
2. Cộng, trừ, nhân, chia số thập phân
Để cộng, trừ, nhân, chia các số thập phân ta viết chúng dưới dạng phân số thập phân rồi làm theo quy tắc các phép tính đã biết về phân số hoặc sử dụng các tính chất giao hoán, kết hợp... để thực hiện phép tính một cách hợp lý.
Ví dụ: Thực hiện phép tính \(\left( { - 4,1} \right) + \left( { - 13,7} \right) + \left( { + 31} \right) + \left( { - 5,9} \right) + \left( { - 6,3} \right)\)
Ta có:
\(\left( { - 4,1} \right) + \left( { - 13,7} \right) + \left( { + 31} \right) + \left( { - 5,9} \right) + \left( { - 6,3} \right)\)
\( = \left[ {\left( { - 4,1} \right) + \left( { - 5,9} \right)} \right] + \left[ {\left( { - 13,7} \right) + \left( { - 6,3} \right)} \right] + 31\)
\( = - 10 + \left( { - 20} \right) + 31\)
\( = - 30 + 31\)
\( = 1\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            