Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức


1. Công thức tính góc giữa hai đường thẳng

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

1. Công thức tính góc giữa hai đường thẳng

Trong không gian Oxyz, cho hai đường thẳng \(\Delta \) và \(\Delta '\) tương ứng có vecto chỉ phương \(\overrightarrow u  = (a;b;c),\overrightarrow {u'}  = (a';b';c')\). Khi đó:

\(\cos (\Delta ,\Delta ') = \left| {\cos (\overrightarrow u ,\overrightarrow {u'} )} \right| = \frac{{\left| {aa' + bb' + cc'} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {a{'^2} + b{'^2} + c{'^2}} }}\)

2. Công thức tính góc giữa đường thẳng và mặt phẳng

Trong không gian Oxyz, cho đường thẳng \(\Delta \) có vecto chỉ phương \(\overrightarrow u  = (a;b;c)\) và mặt phẳng (P) có vecto pháp tuyến \(\overrightarrow n  = (A;B;C)\). Khi đó:

\(\sin (\Delta ,(P)) = \left| {\cos (\overrightarrow u ,\overrightarrow n )} \right| = \frac{{\left| {aA + bB + cC} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {{A^2} + {B^2} + {C^2}} }}\)

3. Công thức tính góc giữa hai mặt phẳng

Trong không gian Oxyz, cho hai mặt phẳng (P), (Q) tương ứng có các vecto pháp tuyến \(\overrightarrow n  = (A;B;C),\overrightarrow {n'}  = (A';B';C')\). Khi đó, góc giữa (P) và (Q), kí hiệu là ((P), (Q)), được tính theo công thức:

\(\cos ((P),(Q)) = \left| {\cos (\overrightarrow n ,\overrightarrow {n'} )} \right| = \frac{{\left| {AA' + BB' + CC'} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} .\sqrt {A{'^2} + B{'^2} + C{'^2}} }}\)


Bình chọn:
4 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí