Tìm các chữ số $x, y$ biết rằng: \(\overline {23x5y} \) chia hết cho $2; 5$ và $9.$
\(x = 0;y = 6\)
\(x = 6;y = 0\)
\(x = 8;y = 0\)
\(x = 0;y = 8\)
Có bao nhiêu số tự nhiên dạng \(\overline {5a42b} \) chia hết cho cả \(2;5\) và \(3?\)
\(3\)
\(4\)
\(2\)
\(1\)
Tìm các số tự nhiên \(x\) vừa chia hết cho \(2\) vừa chia hết cho \(5\) và \(1998 < x < 2018.\)
\(x \in \left\{ {2000} \right\}\)
\(x \in \left\{ {2000;2010} \right\}\)
\(x \in \left\{ {2010} \right\}\)
\(x \in \left\{ {1990;2000;2010} \right\}\)
Tìm số tự nhiên \(\overline {145*} \) chia hết cho cả \(3\) và \(5.\)
\(1454\)
\(1450\)
\(1455\)
\(1452\)
Có bao nhiêu cặp số \(a;b\) sao cho số \(\overline {52ab} \) chia hết cho \(9\) và chia cho \(5\) dư \(2.\)
\(4\)
\(1\)
\(2\)
\(3\)
Cho \(\overline {17*} \)chia hết cho 2. Số thay thế cho * có thể là
Cho \(\overline {17*} \)chia hết cho 5. Số thay thế cho * có thể là
Tìm chữ số thích hợp ở dấu * để số \(\overline {212*} \) vừa chia hết cho 2 vừa chia hết cho 5.