CHƯƠNG 1. SỐ TỰ NHIÊN
Bài 1. Tập hợp
Bài 2. Tập hợp các số tự nhiên
Bài 3. Phép cộng, phép trừ các số tự nhiên
Bài 4. Phép nhân, phép chia với các số tự nhiên
Bài 5. Phép tính lũy thừa với số mũ tự nhiên
Bài 6. Thứ tự thực hiện các phép tính
Bài 7. Quan hệ chia hết. Tính chất chia hết
Bài 8. Dấu hiệu chia hết cho 2, cho 5
Bài 9. Dấu hiệu chia hết cho 3, cho 9
Bài 10. Số nguyên tố. Hợp số
Bài 11. Phân tích một số ra thừa số nguyên tố
Bài 12. Ước chung và ước chung lớn nhất
Bài 13. Bội chung và bội chung nhỏ nhất
Bài tập cuối chương 1
CHƯƠNG 2. SỐ NGUYÊN
Bài 1. Số nguyên âm
Bài 2. Tập hợp các số nguyên
Bài 3. Phép cộng các số nguyên
Bài 4. Phép trừ các số nguyên. Quy tắc dấu ngoặc
Bài 5. Phép nhân các số nguyên
Bài 6. Phép chia hết hai số nguyên. Quan hệ chia hết trong tập hợp số nguyên
Bài tập cuối chương 2
Hoạt động thực hành và trải nghiệm
CHƯƠNG 3. HÌNH HỌC TRỰC QUAN
Bài 1. Tam giác đều. Hình vuông. Lục giác đều
Bài 2. Hình chữ nhật. Hình thoi
Bài 3. Hình bình hành
Bài 4. Hình thang cân
Bài 5. Hình có trục đối xứng
Bài 6. Hình có tâm đối xứng
Bài 7. Đối xứng trong thực tiễn
Bài tập cuối chương 3
Thực hành phần mềm geogebra
CHƯƠNG 5. PHÂN SỐ VÀ SỐ THẬP PHÂN
Bài 1. Phân số với tử và mẫu là số nguyên
Bài 2. So sánh các phân số. Hỗn số dương
Bài 3. Phép cộng và phép trừ phân số
Bài 4. Phép nhân và phép chia phân số
Bài 5. Số thập phân
Bài 6. Phép cộng và phép trừ số thập phân
Bài 7. Phép nhân, phép chia số thập phân
Bài 8. Ước lượng và làm tròn số
Bài 9. Tỉ số. Tỉ số phần trăm
Bài 10. Hai bài toán về phân số
Bài tập cuối chương 5
Hoạt động thực hành và trải nghiệm chủ đề 2
CHƯƠNG 6. HÌNH HỌC PHẲNG
Bài 1. Điểm. Đường thẳng
Bài 2. Hai đường thẳng cắt nhau, hai đường thẳng song song
Bài 3. Đoạn thẳng
Bài 4. Tia
Bài 5. Góc
Bài tập cuối chương 6
Hoạt động thực hành và trải nghiệm chủ đề 3

Trắc nghiệm Bài 10. Số nguyên tố. Hợp số Toán 6 có đáp án

Trắc nghiệm Bài 10. Số nguyên tố. Hợp số

17 câu hỏi
Trắc nghiệm
Câu 1 :

Khẳng định nào là sai:

  • A.

    $0$  và $1$  không là số nguyên tố cũng không phải hợp số.

  • B.

    Cho số $a > 1$, $a$  có $2$  ước thì $a$  là hợp số.

  • C.

    $2$ là số nguyên tố chẵn duy nhất.

  • D.

    Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.

Câu 2 :

Khẳng định nào sau đây là đúng:

  • A.

    $A = {\rm{\{ 0; 1\} }}$ là tập hợp số nguyên tố    

  • B.

    $A = {\rm{\{ 3; 5\} }}$ là tập hợp số nguyên tố         

  • C.

    $A\, = {\rm{\{ 1; 3; 5\} }}$ là tập hợp các hợp số

  • D.

    $A = {\rm{\{ 7;8\} }}$ là tập hợp số hợp số

Câu 3 :

Kết quả của phép tính nào sau đây là số nguyên tố:

  • A.

    $15 - 5 + 3$

  • B.

    $7.2 + 1$     

  • C.

    $14.6:4$   

  • D.

    $6.4 - 12.2$

Câu 4 :

Thay dấu * để được số nguyên tố $\overline {3*} $:

  • A.

    $7$      

  • B.

    $4$      

  • C.

    $6$       

  • D.

    $9$

Câu 5 :

Thay dấu * để được số nguyên tố $\overline {*1} $:

  • A.

    $2$    

  • B.

    $8$   

  • C.

    $5$  

  • D.

    $4$

Câu 6 :

Cho các số \(21;77;71;101\). Chọn câu đúng.

  • A.

    Số \(21\) là hợp số, các số còn lại là số nguyên tố

  • B.

    Có hai số nguyên tố và hai hợp số trong các số trên.

  • C.

    Chỉ có một số nguyên tố  còn lại là hợp số

  • D.

    Không có số nguyên tố nào trong các số trên

Câu 7 :

Cho \(A = 90.17 + 34.40 + 12.51\) và \(B = 5.7.9 + 2.5.6\) . Chọn câu đúng.

  • A.

    A là số nguyên tố, B là hợp số

  • B.

    A là hợp số, B là số nguyên tố

  • C.

    Cả A và B là số nguyên tố

  • D.

    Cả A và B đều là hợp số

Câu 8 :

Tổng của $3$ số nguyên tố là $578.$ Tìm ra số nguyên tố nhỏ nhất trong $3$ số nguyên tố đó.

  • A.

    $2$                                

  • B.

    $8$                                

  • C.

    $5$                                

  • D.

    $4$                                

Câu 9 :

Có bao nhiêu số nguyên tố \(x\) thỏa mãn \(50 < x < 60?\)

  • A.

    $2$                                

  • B.

    $8$                                 

  • C.

    $5$                                    

  • D.

    $4$

Câu 10 :

Tìm tất cả các số tự nhiên \(n\) để \({n^2} + 12n\) là số nguyên tố.

  • A.

    $n = 11$                                

  • B.

    $n = 13$                                 

  • C.

    $n = 2$                                    

  • D.

    $n = 1$

Câu 11 :

Có bao nhiêu số nguyên tố \(p\) sao cho \(p + 4\) và \(p + 8\) cũng là số nguyên tố.

  • A.

    $2$                                

  • B.

    $1$                                 

  • C.

    $5$                                    

  • D.

    $4$

Câu 12 :

Cho nguyên tố \(p\) chia cho \(42\) có số dư \(r\) là hợp số. Tìm \(r.\)

  • A.

    $r = 29$                                

  • B.

    $r = 15$                                 

  • C.

    $r = 27$                                    

  • D.

    $r = 25$

Câu 13 :

Chọn khẳng định đúng:

  • A.

    Mọi số tự nhiên đều có ước chung với nhau.               

  • B.

    Mọi số tự nhiên đều có ước là $0$  .                     

  • C.

    Số nguyên tố chỉ có đúng $1$ ước là chính nó.              

  • D.

    Hai số nguyên tố khác nhau thì không có ước chung.

Câu 14 :

Số nào trong các số sau không là số nguyên tố?

  • A.

    2

  • B.

    3

  • C.

    5

  • D.

    9

Câu 15 :

Nếu cho 7 hình vuông đơn vị ghép thành hình chữ nhật thì có mấy cách xếp (Không kể việc xoay chiều dài và chiều rộng)?

  • A.

    1

  • B.

    2

  • C.

    3

  • D.

    4

Câu 16 :

Số nguyên tố nhỏ hơn 30 là:

  • A.
    23
  • B.
    31
  • C.
    27
  • D.
    32
Câu 17 :

Một ước nguyên tố của 91 là

  • A.

    1

  • B.

    2

  • C.

    3

  • D.

    7