Giải mục 1 trang 27 SGK Toán 9 tập 2 - Cùng khám phá


Dùng phần mềm Geogebra vẽ đồ thị của các hàm số sau và tìm toạ độ giao điểm (nếu có) của hai đồ thị: 1. \(y = \frac{1}{3}{{\rm{x}}^2}\) và \(y = - x + \frac{1}{2}\) 2. \(y = \sqrt 2 {x^2}\) và \(y = 2x - \sqrt 3 \) 3. \(y = - 1,2{x^2}\) và \(y = 0,6x + 0,075\)

Đề bài

Trả lời câu hỏi Thực hành trang 27 SGK Toán 9 Cùng khám phá

Dùng phần mềm Geogebra vẽ đồ thị của các hàm số sau và tìm toạ độ giao điểm (nếu có) của hai đồ thị:

1. \(y = \frac{1}{3}{{\rm{x}}^2}\) và \(y =  - x + \frac{1}{2}\)

2. \(y = \sqrt 2 {x^2}\) và \(y = 2x - \sqrt 3 \)

3. \(y =  - 1,2{x^2}\) và \(y = 0,6x + 0,075\)

Phương pháp giải - Xem chi tiết

Bước 1. Vẽ đồ thị hàm số \(y = a{x^2}\).

Nhập lệnh y = ax^2.

Bước 2. Vẽ đồ thị hàm số y = ax + b.

Nhập lệnh y = ax + b.

Bước 3. Tìm tọa độ giao điểm của hai đồ thị.

Dùng  để tìm giao điểm của hai đồ thị.

Bước 4. Kiểm tra kết quả bằng cách sử dụng máy tính cầm tay giải phương trình bậc hai.

Lời giải chi tiết

1. \(y = \frac{1}{3}{x^2}\) và \(y =  - x + \frac{1}{2}\).

Bước 1. Vẽ đồ thị hàm số \(y = \frac{1}{3}{x^2}\).

Nhập lệnh y = 1/3*x^2

Bước 2. Vẽ đồ thị hàm số \(y =  - x + \frac{1}{2}\).

Nhập lệnh y = -x + 1/2

Bước 3. Tìm tọa độ giao điểm của hai đồ thị.

Dùng  để tìm giao điểm của hai đồ thị.

Bước 4. Kiểm tra kết quả bằng cách sử dụng máy tính cầm tay giải phương trình bậc hai.

\(\begin{array}{l}\frac{1}{3}{x^2} =  - x + \frac{1}{2}\\\frac{1}{3}{x^2} + x - \frac{1}{2} = 0\end{array}\)

Ta được tọa độ điểm A.

Ta được tọa độ điểm B.

2. \(y = \sqrt 2 {x^2}\) và \(y = 2x - \sqrt 3 \).

Bước 1. Vẽ đồ thị hàm số \(y = \sqrt 2 {x^2}\).

Sử dụng bàn phím của GeoGebra để nhập kí hiệu \(\sqrt {...} \)

Ta được màn hình như sau:

Nhập lệnh: \(y = \sqrt 2 *x\^2\)

Bước 2. Vẽ đồ thị hàm số \(y = 2x - \sqrt 3 \).

Nhập lệnh \(y = 2x - \sqrt 3 \)

Bước 3. Tìm tọa độ giao điểm của hai đồ thị.

Dùng  ta thấy hai đồ thị không có điểm chung.

Do đó không có giao điểm của hai đồ thị.

Bước 4. Kiểm tra kết quả bằng cách sử dụng máy tính cầm tay giải phương trình bậc hai.

\(\begin{array}{l}\sqrt 2 {x^2} = 2x - \sqrt 3 \\\sqrt 2 {x^2} - 2x + \sqrt 3  = 0\end{array}\)

Sử dụng máy tính cầm tay để giải phương trình, ta được:

Vậy hai đồ thị không có giao điểm.

3. \(y =  - 1,2{x^2}\) và \(y = 0,6x + 0,075\).

Bước 1. Vẽ đồ thị hàm số \(y =  - 1,2{x^2}\).

Nhập lệnh y = -1.2*x^2

Bước 2. Vẽ đồ thị hàm số \(y = 0,6x + 0,075\).

Nhập lệnh \(y = 0.6x + 0.075\)

Bước 3. Tìm tọa độ giao điểm của hai đồ thị.

Dùng  để tìm giao điểm của hai đồ thị.

Bước 4. Kiểm tra kết quả bằng cách sử dụng máy tính cầm tay giải phương trình bậc hai.

\(\begin{array}{l} - 1,2{x^2} = 0,6x + 0,075\\ - 1,2{x^2} - 0,6x - 0,075 = 0\end{array}\)

Ta được tọa độ điểm A.


Bình chọn:
4.9 trên 7 phiếu

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí