 Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                                                
                            Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                         Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn ..
                                                        Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn ..
                                                    Giải câu hỏi trắc nghiệm trang 105 vở thực hành Toán 9>
Độ dài cung ({30^o}) của một đường tròn có đường kính 20cm là A. 5,5cm. B. 5,34cm. C. 4,34cm. D. 5,24cm.
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Chọn phương án đúng cho mỗi câu sau:
Câu 1
Trả lời Câu 1 trang 105 Vở thực hành Toán 9
Độ dài cung \({30^o}\) của một đường tròn có đường kính 20cm là
A. 5,5cm.
B. 5,34cm.
C. 4,34cm.
D. 5,24cm.
Phương pháp giải:
Độ dài l của cung \({n^o}\) trên đường tròn (O; R) là \(l = \frac{n}{{180}}.\pi R\).
Lời giải chi tiết:
Độ dài cung \({30^o}\) của một đường tròn có đường kính 20cm là: \(l = \frac{{30}}{{180}}.\pi .10 \approx 5,24\left( {cm} \right)\)
Chọn D
Câu 2
Trả lời Câu 2 trang 105 Vở thực hành Toán 9
Hình quạt tròn bán kính R, ứng với cung \({90^o}\) có diện tích bằng
A. \(\pi {R^2}\).
B. \(\frac{{\pi {R^2}}}{2}\).
C. \(\frac{{\pi {R^2}}}{4}\).
D. \(\frac{{\pi {R^2}}}{8}\).
Phương pháp giải:
Diện tích \({S_q}\) của hình quạt tròn bán kính R ứng với cung \({n^o}\): \({S_q} = \frac{n}{{360}}.\pi {R^2}\).
Lời giải chi tiết:
Diện tích hình quạt tròn bán kính R, ứng với cung \({90^o}\) là: \({S_q} = \frac{{90}}{{360}}.\pi {R^2} = \frac{{\pi {R^2}}}{4}\)
Chọn C
Câu 3
Trả lời Câu 3 trang 105 Vở thực hành Toán 9
Cho đường tròn (O, 10cm), đường kính AB. Điểm \(M \in \left( O \right)\) sao cho \(\widehat {MAO} = {45^o}\). Diện tích của hình quạt tròn AOM là
A. \(25\pi \;c{m^2}\).
B. \(5\pi \;c{m^2}\).
C. \(50\pi \;c{m^2}\).
D. \(\frac{{25\pi }}{2}\;c{m^2}\).
Phương pháp giải:
Diện tích \({S_q}\) của hình quạt tròn bán kính R ứng với cung \({n^o}\): \({S_q} = \frac{n}{{360}}.\pi {R^2}\).
Lời giải chi tiết:
Hình quạt tròn AOM có số đo cung bằng \(2.45 = {90^o}\) . Do đó, diện tích hình quạt tròn là: \({S_q} = \frac{{90}}{{360}}.\pi {.10^2} = 25\pi \;\left( {c{m^2}} \right)\)
Chọn A
Câu 4
Trả lời Câu 4 trang 105 Vở thực hành Toán 9
Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 2cm) và (O; 4cm) là
A. \(2\pi \;c{m^2}\).
B. \(4\pi \;c{m^2}\).
C. \(12\pi \;c{m^2}\).
D. \(16\pi \;c{m^2}\).
Phương pháp giải:
Diện tích \({S_v}\) của hình vành khuyên tạo bởi hai đường tròn đồng tâm có bán kính R và r là: \({S_v} = \pi \left( {{R^2} - {r^2}} \right)\) (với \(R > r\)).
Lời giải chi tiết:
Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; 2cm) và (O; 4cm) là: \({S_v} = \pi \left( {{4^2} - {2^2}} \right) = 12\pi \left( {c{m^2}} \right)\)
Chọn C
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 1 trang 105, 106 vở thực hành Toán 9
- Giải bài 2 trang 106 vở thực hành Toán 9
- Giải bài 3 trang 106 vở thực hành Toán 9
- Giải bài 4 trang 106 vở thực hành Toán 9
- Giải bài 5 trang 107 vở thực hành Toán 9
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            