

Giải câu hỏi mở đầu trang 68 SGK Toán 12 tập 1 - Chân trời sáng tạo>
Biểu đồ dưới đây thống kê thời gian tập thể dục buổi sáng mỗi ngày trong tháng 9/2022 của bác Bình và bác An. Ai là người có thời gian tập đều hơn?
Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Hoá - Sinh - Sử - Địa
Đề bài
Biểu đồ dưới đây thống kê thời gian tập thể dục buổi sáng mỗi ngày trong tháng 9/2022 của bác Bình và bác An.
Ai là người có thời gian tập đều hơn?
Phương pháp giải - Xem chi tiết
Khoảng biến thiên của mẫu số liệu ghép nhóm là hiệu số giữa đầu mút phải của nhóm cuối cùng và đầu mút trái của nhóm đầu tiên có chứa dữ liệu của mẫu số liệu.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm, kí hiệu \({\Delta _Q}\), là hiệu giữa tứ phân vị thứ ba \({Q_3}\) và tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu ghép nhóm đó, tức là \({\Delta _Q} = {Q_3} - {Q_1}\).
Lời giải chi tiết
Từ biểu đồ đã cho, ta có bảng thống kê sau:
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là 40 – 15 = 25 (phút).
Tuy nhiên, trong mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An, khoảng đầu tiên chứa dữ liệu là [20; 25) và khoảng cuối cùng chứa dữ liệu là [25; 30). Do đó, khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An là 30 – 20 = 10 (phút).
Nếu căn cứ theo khoảng biến thiên thì bác Bình có thời gian tập thể dục phân tán hơn bác An, vậy bác An là người có thời gian tập đều hơn.
Cỡ mẫu \(n = 30\).
Gọi \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{30}}\) là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác An được xếp theo thứ tự không giảm.
Ta có: \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{25}} \in [20;25)\); \({x_{26}}; \ldots ;{\rm{ }}{x_{30}} \in [25;30)\);
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_8} \in [20;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
\({Q_1} = 20 + \frac{{\frac{{30}}{4}}}{{25}}(25 - 20) = \frac{{43}}{2}\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{23}} \in [20;25)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 20 + \frac{{\frac{{3.30}}{4}}}{{25}}(25 - 20) = \frac{{49}}{2}\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 3\).
Gọi \({y_1};{\rm{ }}{y_2}; \ldots ;{\rm{ }}{y_{30}}\) là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình được xếp theo thứ tự không giảm.
Ta có: \({y_1};{\rm{ }}{y_2}; \ldots ;{\rm{ }}{y_5} \in [15;20)\); \({y_6}; \ldots ;{\rm{ }}{y_{17}} \in [20;25)\);\({y_{18}}; \ldots ;{\rm{ }}{y_{25}} \in [25;30)\);\({y_{26}};{y_{27}};{\rm{ }}{y_{28}} \in [30;35)\);\({y_{29}};{y_{30}} \in [35;40)\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_8} \in [20;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
\({Q_1}' = 20 + \frac{{\frac{{30}}{4}}-5}{{12}}(25 - 20) = \frac{{505}}{24}\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{23}} \in [25;30)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3}' = 25 + \frac{{\frac{{3.30}}{4} - (5 + 12)}}{8}(30 - 25) = \frac{{455}}{{16}}\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
\({\Delta _Q}' = {Q_3}' - {Q_1}' = \frac{{355}}{{48}}\).
Vì \(\frac{{355}}{{48}}>3\) nên khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác Bình lớn hơn bác An.


- Giải mục 1 trang 68, 69, 70 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải mục 2 trang 70, 71, 72 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 1 trang 73 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 2 trang 74 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 3 trang 74 SGK Toán 12 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 68 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 58 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 52 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 41 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 25 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 68 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 58 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 52 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 41 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 25 SGK Toán 12 tập 1 - Chân trời sáng tạo