Giải câu hỏi khởi động trang 52 SGK Toán 8 tập 2– Chân trời sáng tạo>
Giữa hai điểm
Đề bài
Giữa hai điểm \(B\) và \(C\) có một hồ nước (xem hình bên). Biết \(DE = 45m\). Làm thế nào để tính được khoảng cách giữa hai điểm \(B\) và \(C\)?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Học xong bài này chúng ta có thể sử dụng tính chất đường trung bình của tam giác để giải bài toán.
Lời giải chi tiết
Vì \(BD = DA \Rightarrow D\) là trung điểm của \(AB\);
Vì \(EC = EA \Rightarrow E\) là trung điểm của \(AC\).
Do đó, \(DE\) là đường trung bình của tam giác \(ABC\)
\( \Rightarrow \left\{ \begin{array}{l}DE//BC\\DE = \frac{1}{2}BC\end{array} \right. \Rightarrow 45 = \frac{1}{2}BC \Leftrightarrow BC = 45.2 = 90\left( m \right)\)
Vậy khoảng các của hai điểm \(B\) và \(C\) là 90 m.
- Giải mục 1 trang 52, 53 SGK Toán 8 tập 2– Chân trời sáng tạo
- Giải mục 2 trang 53 SGK Toán 8 tập 2– Chân trời sáng tạo
- Giải bài 1 trang 53 SGK Toán 8 tập 2– Chân trời sáng tạo
- Giải bài 2 trang 54 SGK Toán 8 tập 2– Chân trời sáng tạo
- Giải bài 3 trang 54 SGK Toán 8 tập 2– Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Xác suất lí thuyết và xác suất thực nghiệm SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Mô tả xác suất bằng tỉ số SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Hai hình đồng dạng SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Chân trời sáng tạo
- Lý thuyết Các trường hợp đồng dạng của hai tam giác SGK Toán 8 - Chân trời sáng tạo